STUDY ON ACTIVE POWER OPTIMIZATION IN ACTIVE DISTRIBUTION NETWORKS BASED ON SHARED ENERGY STORAGE
Wang Jie1, Ge Yuan1,2, Wang Chao3, Wang Pengcheng1, Yu Nuo1
Author information+
1. School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; 2. Academic and Technical Leaders and Candidates of Anhui Province, Wuhu 241000, China; 3. Grid Anhui Electric Power Company Wuhu Power Supply Company, Wuhu 241000, China
Considering that the active power loss in an active distribution network primarily arises from resistive losses between branches and the phenomenon of increased active power loss in upstream branches to fulfill power balance requirements for subsequent nodes under a radial operating state, a node-to-node energy sharing strategy based on shared energy storage is proposed. Building upon this strategy, an active distribution network active optimization and scheduling model is developed, incorporating“wind-solar-gas-storage” components. The model aims to minimize the daily total active power loss in the active distribution network, employing an improved equilibrium optimization algorithm that combines forward-backward substitution. Comparative analysis is conducted with predefined scenarios. Simulation results validate the effectiveness of the proposed strategy and methodology, which not only optimize power loss and enhance voltage levels but also improve the quality of electrical energy, increase the integration proportion of distributed renewable energy, enhance the resilience and adaptability of the power system.
Wang Jie, Ge Yuan, Wang Chao, Wang Pengcheng, Yu Nuo.
STUDY ON ACTIVE POWER OPTIMIZATION IN ACTIVE DISTRIBUTION NETWORKS BASED ON SHARED ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 99-107 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1121
中图分类号:
TM712
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CAO Y J, LI Q, TAN Y, et al.A comprehensive review of Energy Internet: basic concept, operation and planning methods, and research prospects[J]. Journal of modern power systems and clean energy, 2018, 6(3): 399-411. [2] PANDŽIĆ H, KUZLE I, CAPUDER T. Virtual power plant mid-term dispatch optimization[J]. Applied energy, 2013, 101: 134-141. [3] 刘吉臻, 李明扬, 房方, 等. 虚拟发电厂研究综述[J]. 中国电机工程学报, 2014, 34(29): 5103-5111. LIU J Z, LI M Y, FANG F, et al.Review on virtual power plants[J]. Proceedings of the CSEE, 2014, 34(29): 5103-5111. [4] 李虹, 林兰心, 赵小军. 基于需求侧用户响应分析的电-气-热综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(5): 97-105. LI H, LIN L X, ZHAO X J.Low carbon economic scheduling of electricity-gas-heat integrated energy system based on demand-side user response analysis[J]. Acta energiae solaris sinica, 2023, 44(5): 97-105. [5] HÜBLER M, LÖSCHEL A. The EU decarbonisation roadmap 2050: what way to walk?[J]. Energy policy, 2013, 55: 190-207. [6] IRENA, Renewable capacity statistics 2023[EB/OL]. Renewable capacity statistics 2023[EB/OL].https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023. [7] DING T, BO R, SUN H B, et al.A robust two-level coordinated static voltage security region for centrally integrated wind farms[J]. IEEE transactions on smart grid, 2016, 7(1): 460-470. [8] 马丽叶, 高会芳, 朱韬, 等. 基于超球支持向量机的主动配电网经济运行评价模型[J]. 太阳能学报, 2019, 40(12): 3466-3476. MA L Y, GAO H F, ZHU T, et al.Evaluation model for economic operation of active distribution network based on hyper-sphere support vector machine[J]. Acta energiae solaris sinica, 2019, 40(12): 3466-3476. [9] ELSAIAH S, BENIDRIS M, MITRA J.Analytical approach for placement and sizing of distributed generation on distribution systems[J]. IET generation, transmission & distribution, 2014, 8(6): 1039-1049. [10] VITA V, ALIMARDAN T, EKONOMOU L.The impact of distributed generation in the distribution networks’voltage profile and energy losses[C]//2015 IEEE European Modelling Symposium (EMS). Madrid, Spain, 2015: 260-265. [11] WANG L L, WANG X, JIANG C W, et al.Dynamic coordinated active-reactive power optimization for active distribution network with energy storage systems[J]. Applied sciences, 2019, 9(6): 1129. [12] LIU J Y, GAO H J, MA Z, et al.Review and prospect of active distribution system planning[J]. Journal of modern power systems and clean energy, 2015, 3(4): 457-467. [13] DIAB H, ABDELSALAM M, ABDELBARY A.A multi-objective optimal power flow control of electrical transmission networks using intelligent meta-heuristic optimization techniques[J]. Sustainability, 2021, 13(9): 4979. [14] 王玲玲, 王昕, 郑益慧, 等. 计及多个风电机组出力相关性的配电网无功优化[J]. 电网技术, 2017, 41(11): 3463-3469. WANG L L, WANG X, ZHENG Y H, et al.Reactive power optimization of distribution network considering output correlation of multiple wind turbines[J]. Power system technology, 2017, 41(11): 3463-3469. [15] YANG H T, LIAO J T.MF-APSO-based multiobjective optimization for PV system reactive power regulation[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1346-1355. [16] 孙浩锋, 章健, 熊壮壮, 等. 含风光储联合发电系统的主动配电网无功优化[J]. 电测与仪表, 2023, 60(2): 104-110, 125. SUN H F, ZHANG J, XIONG Z Z, et al.Reactive power optimization of active distribution network with wind-photovoltaic-energy storage hybrid generation system[J]. Electrical measurement & instrumentation, 2023, 60(2): 104-110, 125. [17] WANG L L, WANG X, JIANG C W, et al.Dynamic coordinated active-reactive power optimization for active distribution network with energy storage systems[J]. Applied sciences, 2019, 9(6): 1129. [18] 闫东翔, 陈玥. 共享储能商业模式和定价机制研究综述[J]. 电力系统自动化, 2022, 46(23): 178-191. YAN D X, CHEN Y.Review on business mode and pricing mechanism for shared energy storage[J]. Automation of electric power systems, 2022, 46(23): 178-191. [19] 周天娇, 周任军, 黄婧杰, 等. 储能聚合商自营共享模式下电能交易方法[J]. 电力自动化设备, 2023, 43(5): 171-176. ZHOU T J, ZHOU R J, HUANG J J, et al.Energy trading method of energy storage aggregators under self-operating and sharing mode[J]. Electric power automation equipment, 2023, 43(5): 171-176. [20] XIAO H, PU X W, PEI W, et al.A novel energy management method for networked multi-energy microgrids based on improved DQN[J]. IEEE transactions on smart grid, 2023, 14(6): 4912-4926. [21] 彭大健, 肖浩, 裴玮, 等. 基于ADMM的共享储能参与电网辅助服务的分布式优化模型[J]. 电力自动化设备, 2024, 44(2): 1-8. PENG D J, XIAO H, PEI W, et al.Distributed optimization model of shared energy storage participating in power grid auxiliary service based on ADMM[J]. Electric power automation equipment, 2024, 44(2): 1-8. [22] 李笑竹, 陈来军, 杜锡力, 等. 考虑退役动力电池衰减特性的新能源场站群共享储能长期规划配置[J]. 太阳能学报, 2022, 43(5): 499-509. LI X Z, CHEN L J, DU X L, et al.Study on long-term planning of shared energy storage at power generation considering attenuation characteristics of retired power batteries[J]. Acta energiae solaris sinica, 2022, 43(5): 499-509. [23] 高红均, 刘俊勇, 沈晓东, 等. 主动配电网最优潮流研究及其应用实例[J]. 中国电机工程学报, 2017, 37(6): 1634-1645. GAO H J, LIU J Y, SHEN X D, et al.Optimal power flow research in active distribution network and its application examples[J]. Proceedings of the CSEE, 2017, 37(6): 1634-1645. [24] HOTA A P, MISHRA S.A forward-backward sweep based numerical approach for active power loss allocation of radial distribution network with distributed generations[J]. International journal of numerical modelling: electronic networks, devices and fields, 2021, 34(1): e2788. [25] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al.Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-based systems, 2020, 191: 105190. [26] REDDY S S, PANIGRAHI B K.Application of swarm intelligent techniques with mixed variables to solve optimal power flow problems[J]. International journal of bio-inspired computation, 2017, 10(4): 283. [27] SHAHEEN A M, EL-SEHIEMY R A, ELATTAR E E, et al. A modified crow search optimizer for solving non-linear OPF problem with emissions[J]. IEEE access, 2021, 9: 43107-43120. [28] HOUSSEIN E H, HASSAN M H, MAHDY M A, et al.Development and application of equilibrium optimizer for optimal power flow calculation of power system[J]. Applied intelligence, 2023, 53(6): 7232-7253. [29] NUAEKAEW K, ARTRIT P, PHOLDEE N, et al.Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer[J]. Expert systems with applications, 2017, 87: 79-89.