流动控制组合对潮流能水轮机翼型水动力学的特性影响研究

裴振, 刘永辉, 薛宇, 谭俊哲, 袁鹏, 司先才

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 717-725.

PDF(2616 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2616 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 717-725. DOI: 10.19912/j.0254-0096.tynxb.2023-1123

流动控制组合对潮流能水轮机翼型水动力学的特性影响研究

  • 裴振1, 刘永辉1,2, 薛宇1, 谭俊哲1,3, 袁鹏1,3, 司先才1,3
作者信息 +

INFLUENCE OF COMBINED FLOW CONTROL ON HYDRODYNAMIC CHARACTERISTICS OF TIDAL TURBINE HYDROFOIL

  • Pei Zhen1, Liu Yonghui1,2, Xue Yu1, Tan Junzhe1,3, Yuan Peng1,3, Si Xiancai1,3
Author information +
文章历史 +

摘要

为全面提升潮流能水轮机叶片的水动力学性能,将格尼襟翼(GF)和涡流发生器(VGs)的附加件组合引入到潮流能水轮机领域,研究附加件组合对改善水轮机叶片水动力性能的作用机理。以NACA4418翼型为研究对象,分别建立加装格尼襟翼、涡流发生器和二者流动控制组合的水轮机翼型三维模型,应用数值模拟方法研究流动控制组合对水轮机叶片水动力性能的影响机理。结果表明:安装GF可有效提高翼型段的升力系数,但会降低翼型的失速角;安装VGs可抑制翼型段吸力面的流动分离、增大翼型段的失速角,但攻角越小水动力学性能改善效果越不明显;GF和VGs的流动控制组合则可将二者优势充分结合,在全面提高翼型段升力系数的同时,还可抑制翼型表面的流动分离、增大翼型的失速角,从而获得最佳的流动控制效果。

Abstract

In order to improve the overall hydrodynamic characteristics of tidal turbine blades, this paper introduces the combined flow control method based on Gurney flap (GF) and Vortex generators (VGs) into the field of turbine blade design, and studies the mechanism of the combined flow control approach on the hydrodynamic characteristics of turbine blades. With NACA 4418 hydrofoil as the research object, the three-dimensional models of tidal turbine hydrofoils installed with GF, VGs and their combination are established respectively, and the influences of GF, VGs and their combination on the hydrodynamic performance of turbine blades are studied by numerical simulation method. The comparative research results indicate that the lift coefficient of the hydrofoil section can be effectively improved by installing GF, but the stall angle of the hydrofoil is reduced; the installation of VGs can suppress the flow separation on the suction surface of the hydrofoil section and increase the stall angle, but the improvement in the performance of the hydrofoil is not obvious as the angle of attack becomes small; the flow control combination of GF and VGs can combine their advantages, and it not only improves the lift coefficient of the hydrofoil section, but also suppresses the flow separation and increases the stall angle of the hydrofoil, thus achieving the best flow control effects.

关键词

潮流能 / 叶片翼型 / 数值模拟 / 格尼襟翼 / 涡流发生器 / 流动控制组合

Key words

tidal current energy / blade hydrofoil / numerical simulation / Gurney flap / vortex generators / combined flow control

引用本文

导出引用
裴振, 刘永辉, 薛宇, 谭俊哲, 袁鹏, 司先才. 流动控制组合对潮流能水轮机翼型水动力学的特性影响研究[J]. 太阳能学报. 2024, 45(10): 717-725 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1123
Pei Zhen, Liu Yonghui, Xue Yu, Tan Junzhe, Yuan Peng, Si Xiancai. INFLUENCE OF COMBINED FLOW CONTROL ON HYDRODYNAMIC CHARACTERISTICS OF TIDAL TURBINE HYDROFOIL[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 717-725 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1123
中图分类号: TK730   

参考文献

[1] 张继生, 汪国辉, 林祥峰. 潮流能开发利用现状与关键科技问题研究综述[J]. 河海大学学报(自然科学版), 2021, 49(3): 220-232.
ZHANG J S, WANG G H, LIN X F.A review of recent development and key technology problems in utilization of tidal stream energy[J]. Journal of Hohai University (natural sciences), 2021, 49(3): 220-232.
[2] 吴柏慧, 李春, 朱海天, 等. 风力机叶片被动流动控制技术研究进展[J]. 热能动力工程, 2019, 34(9): 24-40.
WU B H, LI C, ZHU H T, et al.Research progress of passive flow control technology for wind turbine blade[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 24-40.
[3] GAO L Y, ZHANG H, LIU Y Q, et al.Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable energy, 2015, 76: 303-311.
[4] HAO L S, GAO C, SONG W P, et al.Airfoil flow control using vortex generators and a Gurney flap[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2013, 227(12): 2701-2706.
[5] 孙浩伟, 谭俊哲, 刘永辉, 等. 涡流发生器对潮流能水轮机翼型水动力学特性影响的数值模拟[J]. 中国海洋大学学报(自然科学版), 2022, 52(2): 115-122.
SUN H W, TAN J Z, LIU Y H, et al.Numerical simulation of influence of vortex generator on hydrodynamic characteristics of tidal turbine hydrofoil[J]. Periodical of Ocean University of China, 2022, 52(2): 115-122.
[6] 张惠, 赵宗德, 周广鑫, 等. 涡流发生器对风力机翼型气动性能影响的实验研究[J]. 太阳能学报, 2017, 38(4): 951-958.
ZHANG H, ZHAO Z D, ZHOU G X, et al.Experimental investigation of effect of vortex generator on aerodynamic performance of wind turbine airfoil[J]. Acta energiae solaris sinica, 2017, 38(4): 951-958.
[7] KIM S, IM H, KIM B.Numerical analysis of the effects of vortex generators attached to contaminated blades on wind turbine power performance and fatigue load[J]. Journal of mechanical science and technology, 2023, 37(7): 3515-3524.
[8] 车邦祥, LIKHACHEV D S, 曹琳琳, 等. 涡流发生器对水翼流动分离的控制作用研究[J]. 工程热物理学报, 2018, 39(1): 92-97.
CHE B X, LIKHACHEV D S, CAO L L, et al.Research on the effect of vortex generators on controlling flow separation of hydrofoil[J]. Journal of engineering thermophysics, 2018, 39(1): 92-97.
[9] LIEBECK R H.Design of subsonic airfoils for high lift[J]. Journal of aircraft, 1978, 15(9): 547-561.
[10] AMINI Y, EMDAD H, FARID M.Adjoint shape optimization of airfoils with attached Gurney flap[J]. Aerospace science and technology, 2015, 41: 216-228.
[11] HE X, WANG J J, YANG M Q, et al.Numerical simulation of gurney flaps lift-enhancement on a low Reynolds number airfoil[J]. Science China technological sciences, 2017, 60(10): 1548-1559.
[12] CHEN H, CHEN B.Lift enhancement of tiltrotor wing using a gurney flap[J]. International journal of aerospace engineering, 2022, 2022: 1245484.
[13] PAPI F, MELANI P F, ALBER J, et al.Potential of mini gurney flaps as a retrofit to mitigate the performance degradation of wind turbine blades induced by erosion[J]. Journal of physics: conference series, 2022, 2265(3): 032046.
[14] 郝礼书, 乔志德, 宋文萍. 基于涡流发生器和Gurney襟翼的翼型绕流流动控制试验研究[J]. 航空学报, 2011, 32(8): 1429-1434.
HAO L S, QIAO Z D, SONG W P.Experimental research on control flow over airfoil based on vortex generator and Gurney flap[J]. Acta aeronautica et astronautica sinica, 2011, 32(8): 1429-1434.
[15] 张惠, 周广鑫, 康顺. 流动控制组合对风力机翼型性能影响的实验研究[J]. 太阳能学报, 2019, 40(11): 3229-3234.
ZHANG H, ZHOU G X, KANG S.Experimental research on effects of combined flow control accessory over wind turbine airfoil aerodynamic performance[J]. Acta energiae solaris sinica, 2019, 40(11): 3229-3234.
[16] CHNG L, ALBER J, NTOURAS D, et al.On the combined use of vortex generators and Gurney flaps for turbine airfoils[J]. Journal of physics: conference series, 2022, 2265(3): 032040.
[17] 袁鹏, 王旭超, 王树杰, 等. 基于遗传算法的潮流能水轮机叶片翼型优化设计研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(11): 125-131.
YUAN P, WANG X C, WANG S J, et al.Study on optimization of hydrofoil of tidal turbine blade based on genetic algorithm[J]. Periodical of Ocean University of China, 2018, 48(11): 125-131.
[18] LEE T, LEE L.Effect of gurney flap on unsteady wake vortex[J]. Journal of aircraft, 2007, 44(4): 1398-1402.
[19] SUN G, WANG Y, XIE Y D, et al.Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil[J]. Energy, 2021, 225: 120206.
[20] 赵万里, 刘沛清, 朱建勇, 等. Gurney襟翼对风力机流动控制的数值研究[J]. 电网与清洁能源, 2011, 27(9): 85-92.
ZHAO W L, LIU P Q, ZHU J Y, et al.Numerical simulation of the flow control using Gurney flaps for a wind turbine[J]. Power system and clean energy, 2011, 27(9): 85-92.
[21] GRAHAM M, MURADIAN A, TRAUB L W.Experimental study on the effect of gurney flap thickness on airfoil performance[J]. Journal of aircraft, 2018, 55(2): 897-904.
[22] MASDARI M, MOUSAVI M, TAHANI M.Dynamic stall of an airfoil with different mounting angle of gurney flap[J]. Aircraft engineering and aerospace technology, 2020, 92(7): 1037-1048.
[23] GIGUERE P, DUMAS G, LEMAY J.Gurney flap scaling for optimum lift-to-drag ratio[J]. AIAA journal, 1997, 35: 1888-1890.
[24] 周晓亮, 翁海平, 龚玉祥, 等. 涡流发生器设计参数对某40%厚度翼型性能影响的实验研究[J]. 太阳能学报, 2022, 43(6): 212-218.
ZHOU X L, WENG H P, GONG Y X, et al.Experimental study on effect of vortex generator design parameters on 40% thick airfoil[J]. Acta energiae solaris sinica, 2022, 43(6): 212-218.
[25] 者浩楠, 刘永辉, 谭俊哲, 等. 不同涡流发生器参数对潮流能水轮机翼型水动力学特性影响研究[J]. 太阳能学报, 2022, 43(10): 350-356.
ZHE H N, LIU Y H, TAN J Z, et al.Influence of different vortex generator parameters on hydrodynamic characteristics of tidal current turbine hydrofoil[J]. Acta energiae solaris sinica, 2022, 43(10): 350-356.
[26] MENTER F, KUNTZ M, LANGTRY R.Ten years of industrial experience with the SST turbulence model[J]. Turbulence heat and mass transfer, 2003, 4(1): 625-632.

基金

山东省自然科学基金(ZR2021ME095); 国家重点研发计划项目(2018YFB1501903); 山东省重点研发计划(2019GGX103012)

PDF(2616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/