基于CEEMDAN-LSTM风暴潮潮位预测分析研究

徐楚天, 沈良朵, 班文超, 陈亮

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 578-585.

PDF(2337 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2337 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 578-585. DOI: 10.19912/j.0254-0096.tynxb.2023-1132

基于CEEMDAN-LSTM风暴潮潮位预测分析研究

  • 徐楚天, 沈良朵, 班文超, 陈亮
作者信息 +

RESEARCH ON PREDICTION AND ANALYSIS OF STORM SURGE LEVEL BASED ON CEEMDAN-LSTM

  • Xu Chutian, Shen Liangduo, Ban Wenchao, Chen Liang
Author information +
文章历史 +

摘要

该文采用自适应噪声完全集合经验模态分解-长短期记忆方法(CEEMDAN-LSTM)对风暴潮潮位进行短期时间序列预测,并与常用机器学习模型进行对比分析,结果表明:基于CEEMDAN-LSTM的神经网络对工程区风暴潮潮位的短期特征能进行高精度的预报,其稳定性和精度较常规机器学习模型都有较大的改进。

Abstract

In this paper, an innovative approach is proposed, leveraging the complete ensemble empirical mode decomposition with adaptive noise and long short-term memory networks(CEEMDAN-LSTM) model, to forecast short-term time series of storm surge levels. The method is compared to commonly used machine learning models to assess its efficacy. The findings demonstrate that the CEEMDAN-LSTM neural network excels in accurately forecasting the short-term characteristics of storm surge levels within project areas. Notably, this model exhibits superior stability and precision compared to conventional machine learning models.

关键词

风暴潮 / 海上风电 / 潮位预测 / 自适应噪声完全集合经验模态分解 / 长短期记忆网络

Key words

storm surge / offshore wind power / tide level prediction / complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) / long short-term memory networks (LSTM)

引用本文

导出引用
徐楚天, 沈良朵, 班文超, 陈亮. 基于CEEMDAN-LSTM风暴潮潮位预测分析研究[J]. 太阳能学报. 2024, 45(11): 578-585 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1132
Xu Chutian, Shen Liangduo, Ban Wenchao, Chen Liang. RESEARCH ON PREDICTION AND ANALYSIS OF STORM SURGE LEVEL BASED ON CEEMDAN-LSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 578-585 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1132
中图分类号: P731.34   

参考文献

[1] 李勇, 姜兴钰, 田立柱, 等. 渤海的风暴潮[J]. 中国矿业, 2019, 28(增刊2): 510-516.
LI Y, JIANG X Y, TIAN L Z, et al.Storm surges on Bohai Sea[J]. China mining magazine, 2019, 28(S2): 510-516.
[2] GÖNNERT G. Maximum storm surge curve due to global warming for the European north sea region during the 20th-21st century[J]. Natural hazards, 2004, 32(2): 211-218.
[3] EFIMOV D, STASHKEVICH S.Coherence indicators of generators for express assessment of electric power system transient stability[J]. E3S web of conferences, 2023, 384: 01012.
[4] 刘旭, 付翔, 王峥, 等. 我国风暴潮灾害直接经济损失分布与风险可保性研究[J]. 海洋预报, 2022, 39(6): 90-101.
LIU X, FU X, WANG Z, et al.The direct economic Loss distribution and risk insurability of typhoon storm surge disaster in China[J]. Marine forecasts, 2022, 39(6): 90-101.
[5] 张长征, 马广奇, 张保平. 财税支持视域下促进能源结构转型的政策和建议研究[J]. 太阳能学报, 2022, 43(1): 505-506.
ZHANG C Z, MA G Q, ZHANG B P.Research on policies and suggestions for promoting the transformation of energy structure from the perspective of fiscal and tax support[J]. Acta energiae solaris sinica, 2022, 43(1): 505-506.
[6] 王硕, 柯世堂, 赵永发, 等. 台风-浪-流耦合作用下海上风力机基础结构水动力特性分析[J]. 太阳能学报, 2022, 43(10): 218-228.
WANG S, KE S T, ZHAO Y F, et al.Research on hydrodynamics of foundation structure of offshore wind turbine under typhoon-wave-current coupling[J]. Acta energiae solaris sinica, 2022, 43(10): 218-228.
[7] 张容焱, 张秀芝, 徐宗焕, 等. 台风影响下的正常湍流模型(NTM)设计[J]. 太阳能学报, 2014, 35(6): 1075-1079.
ZHANG R Y, ZHANG X Z, XU Z H, et al.Normal turbulence model(NTM) design under influence of typhoon[J]. Acta energiae solaris sinica, 2014, 35(6): 1075-1079.
[8] 韩然, 王珑, 王同光, 等. 台风不同区域中的风力机动力响应特性研究[J]. 太阳能学报, 2020, 41(10): 251-258.
HAN R, WANG L, WANG T G, et al.Danamic response characteristics of wind turbine in different regions of typhoon[J]. Acta energiae solaris sinica, 2020, 41(10): 251-258.
[9] 梁海萍, 李团结, 梁海燕, 等. 海口市风暴潮分布特征与影响因子探析[J]. 海洋学研究, 2022, 40(2): 83-92.
LIANG H P, LI T J, LIANG H Y, et al.Distributional characteristics and influencing factors of storm surge in Haikou[J]. Journal of marine sciences, 2022, 40(2): 83-92.
[10] 罗志发, 黄本胜, 邱静, 等. 粤港澳大湾区风暴潮时空分布特征及影响因素[J]. 水资源保护, 2022, 38(3): 72-79, 153.
LUO Z F, HUANG B S, QIU J, et al.Spatio-temporal distribution characteristics and influencing mechanisms of storm surge in Guangdong, Hong Kong and Macao Greater Bay Area[J]. Water resources protection, 2022, 38(3): 72-79, 153.
[11] 尹姗姗, 陈强. 珠海海域台风风暴潮经验预报方法研究[J]. 水利科技与经济, 2015, 21(11): 84-86.
YIN S S, CHEN Q.Statistical forecast of storm surge research on sea area of Zhuhai[J]. Water conservancy science and technology and economy, 2015, 21(11): 84-86.
[12] 金秋, 周宏杰, 陈永平. 宁波市沿海台风风暴潮增水数值预报研究[J]. 浙江水利科技, 2018, 46(6): 22-25.
JIN Q, ZHOU H J, CHEN Y P.Prediction on storm surge water increase value of typhoons in coastal areas of Ningbo[J]. Zhejiang hydrotechnics, 2018, 46(6): 22-25.
[13] 隆敏, 周舜轩, 韦露斯, 等. 基于ADCIRC模式的粤港澳大湾区风暴潮精细化预报模型研究[J]. 水电能源科学, 2022, 40(10): 91-94.
LONG M, ZHOU S X, WEI L S, et al.Study of refined storm surge model in the great bay area based on ADCIRC model[J]. Water resources and power, 2022, 40(10): 91-94.
[14] 左常圣, 黄清泽, 林春霏, 等. 泗礁岛周边海域风暴潮增减水特征浅析: 以台风“灿鸿” 为例[J]. 海洋湖沼通报, 2022, 44(1): 9-15.
ZUO C S, HUANG Q Z, LIN C F, et al.A brief characterization of water level fluctuation caused by storm surge around Sijiao Islands: Typhoon “Chan-Hom” as an example[J]. Transactions of oceanology and limnology, 2022, 44(1): 9-15.
[15] 刘媛媛, 张丽, 李磊, 等. 基于多变量LSTM神经网络模型的风暴潮临近预报[J]. 海洋通报, 2020, 39(6): 689-694.
LIU Y Y, ZHANG L, LI L, et al.Storm surge nowcasting based on multivariable LSTM neural network model[J]. Marine science bulletin, 2020, 39(6): 689-694.
[16] 苗庆生, 徐珊珊, 杨锦坤, 等. 长短期记忆神经网络在厦门风暴潮预报中的应用[J]. 中国海洋大学学报(自然科学版), 2022, 52(9): 10-19.
MIAO Q S, XU S S, YANG J K, et al.Application of long short-term memory neural network in Xiamen storm surge forecast[J]. Periodical of Ocean University of China, 2022, 52(9): 10-19.
[17] 苑希民, 黄玉啟, 田福昌, 等. 基于LSTM-GM神经网络模型的风暴潮增水预报方法研究[J]. 水资源保护, 2023, 39(6): 8-15.
YUAN X M, HUANG Y Q, TIAN F C, et al.Research on forecasting method of storm surge based on LSTM-GM neural network model[J]. Water resources protection, 2023, 39(6): 8-15.
[18] 谢文鸿, 徐广珺, 董昌明. 基于ConvLSTM机器学习的风暴潮漫滩预报研究[J]. 大气科学学报, 2022, 45(5): 674-687.
XIE W H, XU G J, DONG C M.Research on storm surge floodplain prediction based on ConvLSTM machine learning[J]. Transactions of atmospheric sciences, 2022, 45(5): 674-687.
[19] BAN W C, SHEN L D.PM2.5 prediction based on the CEEMDAN algorithm and a machine learning hybrid model[J]. Sustainability, 2022, 14(23): 16128.
[20] BAN W C, SHEN L D, LU F, et al.Research on long-term tidal-height-prediction-based decomposition algorithms and machine learning models[J]. Remote sensing, 2023, 15(12): 3045.
[21] FANG J.Tide station along the coastal area of China, the biggest and the average water level observation data (1975-1997, 1954-1997, 1962-2014)[Z]. National Tibetan Plateau Data Center, 2023.
[22] 周寅杰, 刘强, 张晓琪. 基于TSA-BP模型的温州站台风风暴潮增水预测[J]. 海洋环境科学, 2022, 41(5): 807-812.
ZHOU Y J, LIU Q, ZHANG X Q.Prediction of typhoon storm surge at Wenzhou station based on TSA-BP model[J]. Marine environmental science, 2022, 41(5): 807-812.
[23] ZHOU H, ZHANG S, PENG J, et al.Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting[M/OL]. arXiv:2012.07436, 2021.

基金

舟山市科技局一般项目(2023C41017);国家自然科学基金(52101330)

PDF(2337 KB)

Accesses

Citation

Detail

段落导航
相关文章

/