不同压缩比螺旋翅片对相变储能罐蓄热响机制

杨先亮, 杜双庆, 袁威, 邱玉龙

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 690-696.

PDF(6159 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6159 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 690-696. DOI: 10.19912/j.0254-0096.tynxb.2023-1133

不同压缩比螺旋翅片对相变储能罐蓄热响机制

  • 杨先亮1,2, 杜双庆1,2, 袁威1,2, 邱玉龙1,2
作者信息 +

INFLUENCE MECHANISM OF SPIRAL FINS OF DIFFERENT COMPRESSION RATIO ON HEAT STORAGE OF PHASE-CHANGE ENERGY STORAGE TANK

  • Yang Xianliang1,2, Du Shuangqing1,2, Yuan Wei1,2, Qiu Yulong1,2
Author information +
文章历史 +

摘要

在传统螺旋翅片基础上提出3种不同压缩比的螺旋翅片结构。首先数值模拟不同压缩比的螺旋翅片储能罐相变材料的熔化过程;其次,讨论4个储能罐中温度场和固液界面的演变情况;再次,分析液相分数、平均温度和平均努塞尔数的变化趋势;最后,对比不同压缩比下相变材料的总蓄热量、熔化时间和平均蓄热速率。结果表明:设计压缩比合适的螺旋翅片可有效促进储能装置相变材料的熔化,减轻下部温度垂直分层现象,增强相变材料的自然对流,提升相变储能罐的蓄热性能;随着压缩比的增加,蓄热速率呈先增加后减小的趋势,而完全熔化时间则先减少后增加;与无压缩螺旋翅片的储能罐相比,当压缩比为3时,石蜡完全熔化时间缩短27.27%,平均蓄热速率提升33.33%,但当压缩比增加到7时,平均蓄热速率反而下降25%,完全熔化时间增加34.67%。

Abstract

Three different compression ratios of spiral fins structures are proposed based on traditional spiral fins to significantly enhance the heat transfer of phase-change energy storage devices. Initially, numerical simulations are conducted to investigate the melting process of phase change materials in energy storage tanks with varying compression ratios of spiral fins. Subsequently, the evolution of the temperature field and solid-liquid interface in four energy storage tanks is discussed. The variations of the liquid fraction, average temperature, and average Nusselt number are then analyzed. Following this, the total heat storage capacity, melting time, and average heat storage rate of phase-change materials under different compression ratios are compared. The research results demonstrate that appropriately designing spiral fins with the correct compression ratio effectively promotes the melting of phase change materials in energy storage devices, alleviates the vertical temperature stratification phenomenon, enhances the natural convection of phase change materials, and improves the heat storage performance of phase-change energy storage tanks. It is observed that with an increase in the compression ratio, the heat storage rate initially increases and then decreases while the melting time decreases first and then increases. When the compression ratio is 3, compared to the energy storage tank without compressed spiral fins, the complete melting time of paraffin is shortened by 27.27% and the average heat storage rate is increased by 33.33%. However, with a compression ratio of 7, the average heat storage rate decreases by 25%, and the complete melting time increases by 34.67%.

关键词

翅片 / 相变材料 / 蓄热 / 压缩比 / 储能装置 / 数值模拟

Key words

fins / phase change materials / heat storage / compression ratio / energy storage device / numerical simulation

引用本文

导出引用
杨先亮, 杜双庆, 袁威, 邱玉龙. 不同压缩比螺旋翅片对相变储能罐蓄热响机制[J]. 太阳能学报. 2024, 45(9): 690-696 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1133
Yang Xianliang, Du Shuangqing, Yuan Wei, Qiu Yulong. INFLUENCE MECHANISM OF SPIRAL FINS OF DIFFERENT COMPRESSION RATIO ON HEAT STORAGE OF PHASE-CHANGE ENERGY STORAGE TANK[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 690-696 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1133
中图分类号: TK02   

参考文献

[1] 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5): 146-155.
JI X G, LI H, YE L, et al.Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta energiae solaris sinica, 2022, 43(5): 146-155.
[2] 代佳豪, 肖刚, 祝培旺, 等. 太阳能布雷顿循环耦合蓄电池平抑光伏输出波动策略研究[J]. 动力工程学报, 2023, 43(6): 717-723.
DAI J H, XIAO G, ZHU P W, et al.Study on fluctuation suppression strategy of solar Brayton cycle with storage battery on photovoltaic output power[J]. Journal of Chinese Society of Power Engineering, 2023, 43(6): 717-723.
[3] 王冬晴, 庄云飞, 张滴滴, 等. 分级相变储放热系统在日光温室中的应用效果[J]. 太阳能学报, 2022, 43(12): 104-111.
WANG D Q, ZHUANG Y F, ZHANG D D, et al.Application effect of graded phase-change heat storage and release system in solar greenhouse[J]. Acta energiae solaris sinica, 2022, 43(12): 104-111.
[4] WU W, WANG X Y, XIA M, et al.A novel composite PCM for seasonal thermal energy storage of solar water heating system[J]. Renewable energy, 2020, 161: 457-469.
[5] SONI V, KUMAR A, JAIN V K.Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery[J]. Renewable energy, 2018, 127: 587-601.
[6] 李昊琦, 魏利平, 庄子贤, 等. 光伏相变系统温控特性及散热结构优化设计[J]. 太阳能学报, 2022, 43(9): 57-63.
LI H Q, WEI L P, ZHUANG Z X, et al.Temperature control characteristics and heat dissipation structure optimization design of photovoltaic phase change system[J]. Acta energiae solaris sinica, 2022, 43(9): 57-63.
[7] 李孝均, 朱兰, 翁秀良. 含建筑相变储能系统的微网日前调度[J]. 太阳能学报, 2023, 44(6): 84-90.
LI X J, ZHU L, WENG X L.Day-ahead scheduling of micro-grid with building phase change energy storage system[J]. Acta energiae solaris sinica, 2023, 44(6): 84-90.
[8] ANISH R, MARIAPPAN V, SURESH S.Experimental investigation on melting and solidification behaviour of erythritol in a vertical double spiral coil thermal energy storage system[J]. Sustainable cities and society, 2019, 44: 253-264.
[9] KARAMI B, AZIMI N, AHMADI S.Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material[J]. Renewable energy, 2021, 178: 25-49.
[10] LIU A H, LIN J J, ZHUANG Y J.PIV experimental study on the phase change behavior of phase change material with partial filling of metal foam inside a cavity during melting[J]. International journal of heat and mass transfer, 2022, 187: 122567.
[11] 张媛媛, 陈昆伦, 姚业成, 等. 相变填充床熔盐斜温层储热系统梯级储热特性[J]. 工程热物理学报, 2023, 44(3): 787-794.
ZHANG Y Y, CHEN K L, YAO Y C, et al.Cascade heat storage characteristics of multiphase molten salt thermocline heat storage system[J]. Journal of engineering thermophysics, 2023, 44(3): 787-794.
[12] ROZENFELD A, KOZAK Y, ROZENFELD T, et al.Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin[J]. International journal of heat and mass transfer, 2017, 110: 692-709.
[13] BORHANI S M, HOSSEINI M J, RANJBAR A A, et al.Investigation of phase change in a spiral-fin heat exchanger[J]. Applied mathematical modelling, 2019, 67: 297-314.
[14] MEHTA D S, VAGHELA B, RATHOD M K, et al.Heat transfer enhancement using spiral fins in different orientations of Latent heat storage unit[J]. International journal of thermal sciences, 2021, 169: 107060.
[15] HE F, BO R F, HU C X, et al.Employing spiral fins to improve the thermal performance of phase-change materials in shell-tube latent heat storage units[J]. Renewable energy, 2023, 203: 518-528.
[16] MIAO X M, RIAZ F, ALOTAIBI B, et al.Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process[J]. Process safety and environmental protection, 2023, 176: 568-579.

基金

河北省自然科学基金(E2022502001)

PDF(6159 KB)

Accesses

Citation

Detail

段落导航
相关文章

/