基于Kmeans++聚类的光伏系统直流电弧故障检测研究

邬洲, 张军, 李隆, 李宝龙, 陈辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 320-329.

PDF(3847 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3847 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 320-329. DOI: 10.19912/j.0254-0096.tynxb.2023-1137

基于Kmeans++聚类的光伏系统直流电弧故障检测研究

  • 邬洲1, 张军2, 李隆3, 李宝龙1, 陈辉1
作者信息 +

RESEARCH ON DC ARC FAULT DETECTION OF PV SYSTEM BASED ON Kmeans++ CLUSTERING

  • Wu Zhou1, Zhang Jun2, Li Long3, Li Baolong1, Chen Hui1
Author information +
文章历史 +

摘要

针对光伏系统中直流侧串联电弧故障由于信号微弱且具有强烈的随机性,从而导致故障不易识别的问题,提出基于互补集合经验模态分解(CEEMD)与K均值聚类(Kmeans++)相结合的故障检测方法。首先,通过使用CEEMD将光伏系统直流侧电流信号分解为若干个本征模态分量(IMF),然后使用皮尔逊相关系数来筛选有效的模态分量以进行信号的重构。其次,对重构后的信号进行时频域特征提取,并应用Kmeans++进行故障识别。实验结果表明,采用所提方法能有效地检测故障。鉴于实际光伏系统运行的复杂性,研究不同外部干扰对电弧检测算法的影响,并通过实验数据验证该方法在抗干扰性方面的优越性。最后,与基于PNN和SVM的故障检测方法进行比较,验证了所提电弧故障检测方法的有效性。

Abstract

A fault detection method based on the combination of complementary set empirical mode decomposition (CEEMD) and K-means clustering (Kmeans++) is proposed to address the issue of difficult identification of DC side series arc faults in photovoltaic systems due to weak signals and strong randomness. Firstly, the DC side current signal of the photovoltaic system is decomposed into several intrinsic mode functions (IMF) using CEEMD, and then Pearson correlation coefficients are used to filter out effective modal components for signal reconstruction. Secondly, extract time-frequency domain features of the reconstructed signal and apply Kmeans++for fault identification. The experimental results show that the proposed method can effectively detect faults. Given the complexity of actual photovoltaic system operation, the influence of different external disturbances on arc detection algorithms was studied, and the superiority of this method in anti-interference was verified through experimental data. Finally, the proposed method was compared with fault detection methods based on PNN and SVM, and experimental data was used to verify its good fault recognition accuracy.

关键词

光伏效应 / 电弧 / 故障检测 / 模态分解 / 特征提取 / 聚类分析

Key words

photovoltaic effects / electric arcs / fault detection / mode decomposition / feature extraction / cluster analysis

引用本文

导出引用
邬洲, 张军, 李隆, 李宝龙, 陈辉. 基于Kmeans++聚类的光伏系统直流电弧故障检测研究[J]. 太阳能学报. 2024, 45(11): 320-329 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1137
Wu Zhou, Zhang Jun, Li Long, Li Baolong, Chen Hui. RESEARCH ON DC ARC FAULT DETECTION OF PV SYSTEM BASED ON Kmeans++ CLUSTERING[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 320-329 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1137
中图分类号: TM501.+2   

参考文献

[1] ARMIJO K M, JOHNSON J, HIBBS M, et al.Characterizing fire danger from low-power photovoltaic arc-faults[C]//2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). Denver, CO, USA, 2014: 3384-3390.
[2] 熊庆, 陈维江, 汲胜昌, 等. 低压直流系统故障电弧特性、检测和定位方法研究进展综述[J]. 中国电机工程学报, 2020, 40(18): 6015-6027.
XIONG Q, CHEN W J, JI S C, et al.Review of research progress on characteristics, detection and localization approaches of fault arc in low voltage DC system[J]. Proceedings of the CSEE, 2020, 40(18): 6015-6027.
[3] LU S B, PHUNG B T, ZHANG D M.A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems[J]. Renewable and sustainable energy reviews, 2018, 89: 88-98.
[4] ARTALE G, CARAVELLO G, CATALIOTTI A, et al.Characterization of DC series arc faults in PV systems based on current low frequency spectral analysis[J]. Measurement, 2021, 182: 109770.
[5] 卢其威, 李亚松, 苏猛猛, 等. 基于改进HHT的直流串联电弧故障检测方法[J]. 电工电能新技术, 2022, 41(11): 70-81.
LU Q W, LI Y S, SU M M, et al.A DC series arc fault detection method based on improved HHT[J]. Advanced technology of electrical engineering and energy, 2022, 41(11): 70-81.
[6] 吴春华, 胡雅, 李智华, 等. 基于SSTDR的光伏系统直流母线电弧故障在线检测与定位[J]. 中国电机工程学报, 2020, 40(8): 2725-2735.
WU C H, HU Y, LI Z H, et al.On-line detection and location of DC bus arc faults in PV systems based on SSTDR[J]. Proceedings of the CSEE, 2020, 40(8): 2725-2735.
[7] 熊庆, 肖戎, 汲胜昌, 等. 基于电磁辐射特性的直流电弧检测方法[J]. 高电压技术, 2017, 43(9): 2967-2975.
XIONG Q, XIAO R, JI S C, et al.Detection method for DC arc based on electromagnetic radiation characteristics[J]. High voltage engineering, 2017, 43(9): 2967-2975.
[8] YAO X, HERRERA L, YUE L, et al.Experimental study of series DC arc in distribution systems[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE). Portland, OR, USA, 2018: 3713-3718.
[9] BRUSSO B C.History of aircraft wiring arc-fault protectionhistory[J]. IEEE industry applications magazine, 2017, 23(3): 6-11.
[10] 牟龙华, 王伊健, 蒋伟, 等. 光伏系统直流电弧故障特征及检测方法研究[J]. 中国电机工程学报, 2016, 36(19): 5236-5244.
MU L H, WANG Y J, JIANG W, et al.Study on characteristics and detection method of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2016, 36(19): 5236-5244.
[11] 林方圆, 苏建徽, 赖纪东. 光伏系统直流故障电弧识别方法研究[J]. 电工电能新技术, 2015, 34(12): 7-13.
LIN F Y, SU J H, LAI J D.Study on detection method of DC arc fault in PV systems[J]. Advanced technology of electrical engineering and energy, 2015, 34(12): 7-13.
[12] 唐圣学, 刁旭东, 陈丽, 等. 光伏发电系统直流串联微弱故障电弧检测方法研究[J]. 仪器仪表学报, 2021, 42(3): 150-160.
TANG S X, DIAO X D, CHEN L, et al.Study on detection method of weak series DC fault arc in PV power generation systems[J]. Chinese journal of scientific instrument, 2021, 42(3): 150-160.
[13] 吴春华, 徐文新, 李智华, 等. 光伏系统直流电弧故障检测方法及其抗干扰研究[J]. 中国电机工程学报, 2018, 38(12): 3546-3555, 14.
WU C H, XU W X, LI Z H, et al.Study on detection method and its anti-interference of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2018, 38(12): 3546-3555, 14.
[14] 郭凤仪, 刘大卫, 王智勇, 等. 光伏系统直流故障电弧实验研究[J]. 电子测量与仪器学报, 2018, 32(6): 25-32.
GUO F Y, LIU D W, WANG Z Y, et al.Experimental research on DC arc fault in PV system[J]. Journal of electronic measurement and instrumentation, 2018, 32(6): 25-32.
[15] 丁鑫, 竺红卫, 殷浩楠, 等. 基于机器学习方法的直流电弧故障检测[J]. 传感器与微系统, 2017, 36(11): 123-127.
DING X, ZHU H W, YIN H N, et al.DC arc fault detection based on machine learning method[J]. Transducer and microsystem technologies, 2017, 36(11): 123-127.
[16] Photovoltaic (PV) DC Arc-Fault Circuit Protection:UL 1699B[S]. ULSE, 2018.
[17] 张瑶佳, 王莉, 尹振东, 等. 基于HHT的航空直流串行电弧特征提取方法[J]. 航空学报, 2019, 40(1): 522404.
ZHANG Y J, WANG L, YIN Z D, et al.Characteristics extraction method of aviation DC serial arc fault based on HHT[J]. Acta aeronautica et astronautica sinica, 2019, 40(1): 522404.
[18] WANG Z, BALOG R S.Arc fault and flash signal analysis in DC distribution systems using wavelet transformation[J]. IEEE transactions on smart grid, 2015, 6(4): 1955-1963.
[19] MIAO W C, XU Q, LAM K H, et al.DC arc-fault detection based on empirical mode decomposition of arc signatures and support vector machine[J]. IEEE sensors journal, 2021, 21(5): 7024-7033.
[20] 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7): 352-358.
ZHAO Z, WANG X S.Ultra-short-term multi-step wind power prediction based on CEEMD and improved time series model[J]. Acta energiae solaris sinica, 2020, 41(7): 352-358.
[21] 杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(13): 126-133.
YANG H Z, TIAN F M, ZHANG P, et al.Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power system protection and control, 2022, 50(13): 126-133.
[22] 李薇, 王鑫鹏, 许野, 等. 基于传递闭包的光伏短期功率组合预测方法研究[J]. 太阳能学报, 2023, 44(6): 265-274.
LI W, WANG X P, XU Y, et al.Research of combined forecasting method of short-term photovoltaic power on transitive closure based[J]. Acta energiae solaris sinica, 2023, 44(6): 265-274.

基金

上海市科委科技创新双碳项目(21DZ1207300)

PDF(3847 KB)

Accesses

Citation

Detail

段落导航
相关文章

/