基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统的仿真研究

李政, 孙东亮, 王齐, 周辰飞, 宇波

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 384-393.

PDF(3435 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3435 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 384-393. DOI: 10.19912/j.0254-0096.tynxb.2023-1143

基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统的仿真研究

  • 李政, 孙东亮, 王齐, 周辰飞, 宇波
作者信息 +

SIMULATION RESEARCH OF COUPLED HEATING SYSTEM UTILIZING WASTE HEAT FROM SUPERCOMEPUTER CENTERS AND SOLAR ENERGY BASED ON SEASONAL SOIL HEAT STORAGE

  • Li Zheng, Sun Dongliang, Wang Qi, Zhou Chenfei, Yu Bo
Author information +
文章历史 +

摘要

为缓解能源危机,降低环境污染,该文创新性提出一种基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统,该系统可适用于太阳能集热器铺设面积有限,难以满足建筑供暖需求的中高层居民住宅。在供暖季时,系统将超算中心余热、太阳能与地源热泵联合供暖,在非供暖季则将多余的热量补充到土壤中,以维持土壤的热平衡。为验证该系统的优越性,以廊坊地区20栋居民住宅为研究对象,基于TRNSYS仿真软件构建传统的“基于跨季节土壤蓄热的太阳能单纯供暖系统”和“基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统”仿真模型。通过比较研究得出:耦合供暖系统在10 a运行期间,土壤平均温度逐年上升,共升高0.73 ℃,系统能耗从开始的3.56×106 kWh降至3.45×106 kWh,COP从开始的3.99升至4.11;单纯供暖系统土壤平均温度逐年下降,在运行至第3年结束时,土壤平均温度下降5.14 ℃,导致地埋管出水长时间处于低温状态,机组停机保护,系统无法正常供暖,在所运行的3 a内系统能耗从4.4×106 kWh增至5.2×106 kWh,COP从3.20降至2.70。以上分析说明超算中心余热和太阳能耦合供暖系统相比太阳能单纯供暖系统增加了超算中心余热跨季节的利用,提高了超算中心的能源利用率,提升了系统的供暖性能,并更加适用于中高层建筑供暖。

Abstract

In order to alleviate the energy crisis and reduce environmental pollution, a heating system that couples waste heat from Supercomputer Centers and solar energy with seasonal soil heat storage is innovatively proposed in this paper. This system is suitable for mid-to-high-rise residential buildings with limited areas for solar collectors, which makes it challenging to meet the heating demand. During the heating season, the system combines waste heat from Supercomputer Centers, solar energy, and ground source heat pumps for heating. During the non-heating season, the surplus heat is injected into the soil to maintain thermal balance. To validate the superiority of this system, simulation models are constructed using the TRNSYS software based on 20 residential buildings in the Langfang region as the research subjects. The simulation models include a traditional " simple heating system utilizing solar energy based on seasonal soil heat storage" and "coupled heating system utilizing waste heat from Supercomputer Centers and solar energy with seasonal soil heat storage". The comparative study shows that during the 10-year operating period, the coupled heating system shows a gradual increase in average soil temperature, with an overall increase of 0.73 ℃. The system energy consumption decreases from an initial value of 3.56×106 kWh to 3.45×106 kWh, and the COP rises from 3.99 to 4.11. the average soil temperature in the simple heating system is decreasing year by year. At the end of the third year of operation, the average soil temperature drops by 5.14 °C. This leads to a long time low-temperature state of the ground loop water and causes shutdown protection of the heat pump, which resulted in the system being unable to provide proper heating. Within the three years of operation, the system energy consumption raises from 4.4×106 kWh to 5.2×106 kWh, and the COP drops from 3.20 to 2.70. The above analysis indicates that compared to the simple heating system, the heating system coupling waste heat from Supercomputer Centers and solar energy enhances the seasonal utilization of surplus heat from Supercomputer Centers, which can improve energy performance of the center and heating performance of the system. Additionally, it is more suitable for heating applications in mid-to-high-rise buildings.

关键词

余热 / 太阳能 / 蓄热 / 耦合供暖系统 / TRNSYS / 热平衡

Key words

waste heat / solar energy / heat storage / coupled heating system / TRNSYS / thermal balance

引用本文

导出引用
李政, 孙东亮, 王齐, 周辰飞, 宇波. 基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统的仿真研究[J]. 太阳能学报. 2024, 45(11): 384-393 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1143
Li Zheng, Sun Dongliang, Wang Qi, Zhou Chenfei, Yu Bo. SIMULATION RESEARCH OF COUPLED HEATING SYSTEM UTILIZING WASTE HEAT FROM SUPERCOMEPUTER CENTERS AND SOLAR ENERGY BASED ON SEASONAL SOIL HEAT STORAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 384-393 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1143
中图分类号: TK529   

参考文献

[1] XU Q, RIFFAT S, ZHANG S H.Review of heat recovery technologies for building applications[J]. Energies, 2019, 12(7): 1285.
[2] PENROD E B, PRASANNA K V.Design of a flat-plate collector for a solar earth heat pump[J]. Solar energy, 1962, 6(1): 9-22.
[3] GEORGIEV A, POPOV R, TOSHKOV E.Investigation of a hybrid system with ground source heat pump and solar collectors: charging of thermal storages and space heating[J]. Renewable energy, 2020, 147: 2774-2790.
[4] LEE M, LEE D C, PARK M H, et al.Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas[J]. Energy, 2022, 240: 122807.
[5] COSKUN S.Performance analysis of a solar-assisted ground source heat pump system in climatic conditions of Turkey[J]. Thermal science, 2020, 24(2 Part A): 977-989.
[6] MIGLA L, SNEGIRJOVS A, SHUTENKOVA O.Performance analysis of solar assisted ground coupled heat pump system in Latvia[J]. E3S web of conferences, 2020, 172: 22011.
[7] BIGLARIAN H, SAIDI M H, ABBASPOUR M.Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate[J]. International journal of environmental science and technology, 2019, 16(7): 3091-3098.
[8] DUARTE W M, PAULINO T F, TAVARES S G, et al.Feasibility of solar-geothermal hybrid source heat pump for producing domestic hot water in hot climates[J]. International journal of refrigeration, 2021, 124: 184-196.
[9] NAILI N, KOOLI S.Solar-assisted ground source heat pump system operated in heating mode: a case study in Tunisia[J]. Renewable and sustainable energy reviews, 2021, 145: 111144.
[10] NAHAVANDINEZHAD M, ZAHEDI A.Conceptual design of solar/geothermal hybrid system focusing on technical, economic and environmental parameters[J]. Renewable energy, 2022, 181: 1110-1125.
[11] LI Y F, BI Y H, LIN Y S, et al.Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season[J]. Energy, 2023, 264: 126394.
[12] ZHANG C X, NIELSEN E, FAN J H, et al.Experimental investigation on a combined solar and ground source heat pump system for a single-family house: energy flow analysis and performance assessment[J]. Energy and buildings, 2021, 241: 110958.
[13] HUANG J P, FAN J H, FURBO S.Demonstration and optimization of a solar district heating system with ground source heat pumps[J]. Solar energy, 2020, 202: 171-189.
[14] ZHANG X Y, WANG E Y, LIU L S, et al.Analysis of the operation performance of a hybrid solar ground-source heat pump system[J]. Energy and buildings, 2022, 268: 112218.
[15] CHEN Y Z, WANG J J, MA C F, et al.Multicriteria performance investigations of a hybrid ground source heat pump system integrated with concentrated photovoltaic thermal solar collectors[J]. Energy conversion and management, 2019, 197: 111862.
[16] WEI C X, WANG Z C, MA K R, et al.Heating application and environmental benefit of solar-assisted ground-source heat pump with seasonal energy storage[J]. Journal of environmental protection and ecology, 2021, 22(2): 588-601.
[17] 刘艳峰, 宋梦瑶, 周勇, 等. 分区串并联式太阳能-地源热泵跨季节蓄热组合系统性能研究[J]. 太阳能学报, 2021, 42(12): 71-79.
LIU Y F, SONG M Y, ZHOU Y, et al.Research on performance of subarea series-parallel solar assisted ground source heat pump system[J]. Acta energiae solaris sinica, 2021, 42(12): 71-79.
[18] 刘仙萍, 田东, 雷豫豪, 等. 光伏/光热-地源热泵联合供热系统运行性能研究[J]. 太阳能学报, 2022, 43(9): 88-97.
LIU X P, TIAN D, LEI Y H, et al.Performance analysis for solar photovoltaic/thermalground source heat pump hybrid heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 88-97.
[19] 杨震, 陈翔燕, 刘诚, 等. 一种基于BP神经网络的太阳能-土壤源热泵复合系统供暖策略仿真[J]. 太阳能学报, 2022, 43(8): 224-229.
YANG Z, CHEN X Y, LIU C, et al.Simulation on a heating strategy based on BP neural network of solar-ground source heat pump composite system[J]. Acta energiae solaris sinica, 2022, 43(8): 224-229.
[20] 高晋坤, 余娟, 刘珏麟, 等. 考虑多时段设备耦合的数据中心能效优化方法[J]. 电力系统自动化, 2022, 46(15): 153-161.
GAO J K, YU J, LIU J L, et al.Optimization method for energy efficiency of data center considering multi-period equipment coupling[J]. Automation of electric power systems, 2022, 46(15): 153-161.
[21] GB 50174—2017, 数据中心设计规范[S].
GB 50174—2017, Code for design of data centers[S].
[22] 李国柱, 崔美华, 黄凯良, 等. 数据中心余热利用现状及在建筑供暖中的应用[J]. 科学技术与工程, 2022, 22(26): 11287-11295.
LI G Z, CUI M H, HUANG K L, et al.Current situation of data center waste heat utilization and its application in building heating[J]. Science technology and engineering, 2022, 22(26): 11287-11295.
[23] WAHLROOS M, PÄRSSINEN M, RINNE S, et al. Future views on waste heat utilization: case of data centers in Northern Europe[J]. Renewable and sustainable energy reviews, 2018, 82: 1749-1764.
[24] 马闯, 任建兴, 李芳芹, 等. 基于<inline-graphic xlink:href="-45-11-384.xml/img_1.png"/>分析的水源热泵利用低品味余热的试验分析[J]. 科学技术与工程, 2020, 20(14): 5629-5632.
MA C, REN J X, LI F Q, et al.Experimental analysis of low-grade waste heat using water source heat pump based on exergy analysis[J]. Science technology and engineering, 2020, 20(14): 5629-5632.
[25] 罗玉庆. 大型数据中心余热回收利用节能研究[J]. 节能, 2019, 38(8): 46-48.
LUO Y Q.Energy-saving research on waste heat recovery and utilization in large data center[J]. Energy conservation, 2019, 38(8): 46-48.
[26] YUMRUTAŞ R, ÜNSAL M.A computational model of a heat pump system with a hemispherical surface tank as the ground heat source[J]. Energy, 2000, 25(4): 371-388.
[27] FURIHATA Y, HAYAMA H, ENAI M, et al.Efficient cooling system for IT equipment in a data center[C]//The 25th International Telecommunications Energy Conference, 2003. INTELEC '03. Yokohama, Japan, 2003: 152-159.

基金

北京市自然科学基金委员会-北京市教育委员会联合项目(KZ201810017023)

PDF(3435 KB)

Accesses

Citation

Detail

段落导航
相关文章

/