基于MICP技术的海上风电场滩涂软土固化试验研究

朱晨俊, 温小栋, 吴佳育, 温维, 李超恩, 孙志伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 467-476.

PDF(2984 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2984 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 467-476. DOI: 10.19912/j.0254-0096.tynxb.2023-1148

基于MICP技术的海上风电场滩涂软土固化试验研究

  • 朱晨俊1, 温小栋1, 吴佳育1, 温维2, 李超恩1, 孙志伟1
作者信息 +

EXPERIMENTAL INVESTIGATION ON CONSOLIDATION OF SOFT SOIL IN MUDFLAT OF OFFSHORE WIND FARM BASED ON MICP TECHNOLOGY

  • Zhu Chenjun1, Wen Xiaodong1, Wu Jiayu1, Wen Wei2, Li Chaoen1, Sun Zhiwei1
Author information +
文章历史 +

摘要

针对基于微生物诱导碳酸钙沉淀(MICP)技术,研究浆料芽孢杆菌在不同pH值和有无钙源的常温培养环境下菌液浓度随时间的变化情况。以宁波滩涂淤泥为研究对象,考虑滨海相软土特性及边坡结构特点,利用巴氏芽孢杆菌诱导碳酸盐对滨海软土进行固结处理。通过压缩、渗透及雨水冲刷试验,并结合X射线衍射(XRD)和扫描电子显微镜(SEM)表征结果,从宏、细观角度分析固化效果及抗冲刷性。研究结果表明:在pH值为7.3的环境下,芽孢杆菌生长最快,在培养约48 h后,其浓度达到峰值;Ca2+会抑制芽孢杆菌的生长,但在生长前期影响较小,而后期影响较大;菌液浓度为1/100的重塑土经养护7 d后,其压缩系数降低19.58%,渗透系数降低87.34%;雨水冲刷结束后剥蚀率仅为3.9 g/(m2·s);芽孢杆菌诱导结晶形成填充并胶结于土颗粒之间的CaCO3晶体聚集体结构,这使得滨海软土具有更好的固结性能、抗渗性能以及坡面抗冲蚀效果提升。

Abstract

During the process of wind power infrastructure construction in coastal tidal flat areas, the problem of mud improvement and solidification as well as reuse in tidal flats is becoming increasingly prominent. Compared with traditional soil chemical reinforcement methods, soil reinforcement technology based on Microbially Induced Calcium Carbonate Precipitation (MICP) has advantages such as low pollution and low energy consumption. In this study, the changes in bacterial liquid concentration over time were investigated under different pH values and with or without calcium sources in a room temperature culture environment using spore-forming bacteria slurry. Taking Ningbo tidal flat mud as the research object and considering the characteristics of coastal soft soil and slope structures, Bacillus pasteurii was used to induce carbonate consolidation treatment on coastal soft soil. Through compression, permeability, rainwater erosion tests, combined with X-ray diffraction(XRD) and scanning electron microscopy(SEM) characterization results, the consolidation effect and erosion resistance were analyzed from macroscopic and microscopic perspectives. The results showed that under an environment with a pH value of 7.3, spore-forming bacteria grew fastest, reaching peak concentration at around 48 hours of cultivation; calcium ions inhibited bacterial growth but had a smaller impact during early growth stages compared to later stages; after curing for 7 days with a bacterial liquid concentration of 1/100th by weight ratio reshaping soil sample, its compression coefficient decreased by 19.58% while its permeability coefficient decreased by 87.34%; after rainwater erosion ended, the erosion rate was only 3.9 g/(m2·s); spore-forming bacteria induced crystallization formed carbonated calcium crystal aggregates filling between soil particles which improved consolidation performance, impermeability performance, and slope surface erosion resistance.

关键词

海上风电 / 微生物诱导碳酸钙沉积 / 土壤加固 / 微观结构 / 滨海相软土

Key words

offshore wind farms / microbial induced carbonate precipitation (MICP) / soil reinforcement / microstructure / coastal soft soil

引用本文

导出引用
朱晨俊, 温小栋, 吴佳育, 温维, 李超恩, 孙志伟. 基于MICP技术的海上风电场滩涂软土固化试验研究[J]. 太阳能学报. 2024, 45(11): 467-476 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1148
Zhu Chenjun, Wen Xiaodong, Wu Jiayu, Wen Wei, Li Chaoen, Sun Zhiwei. EXPERIMENTAL INVESTIGATION ON CONSOLIDATION OF SOFT SOIL IN MUDFLAT OF OFFSHORE WIND FARM BASED ON MICP TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 467-476 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1148
中图分类号: TU476   

参考文献

[1] SUNDAY K, BRENNAN F.A review of offshore wind monopiles structural design achievements and challenges[J]. Ocean engineering, 2021, 235: 109409.
[2] 丁红岩, 章李卉, 张浦阳, 等. 海上临坡宽浅式筒型基础承载特性研究[J]. 太阳能学报, 2021, 42(2): 163-171.
DING H Y, ZHANG L H, ZHANG P Y, et al.Bearing capacity analysis of large diameter and shallow buried bucket foundation near slope for offshore wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 163-171.
[3] 何奔, 熊根, 张宝峰, 等. 近海含气黏土力学特性试验研究: 以嘉兴1号海上风电场为例[J]. 太阳能学报, 2023, 44(4): 23-28.
HE B, XIONG G, ZHANG B F, et al.Experimental study on mechanical properties of offshore gassy clay: taking Jiaxing No. 1 offshore wind farm as an example[J]. Acta energiae solaris sinica, 2023, 44(4): 23-28.
[4] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
QIAN C X, WANG A H, WANG X.Advances of soil improvement with bio-grouting[J]. Rock and soil mechanics, 2015, 36(6): 1537-1548.
[5] 沈道健, 王照宇, 梅岭, 等. 微生物诱导碳酸钙沉淀加固地基技术研究进展[J]. 江苏科技大学学报(自然科学版), 2017, 31(3): 390-398.
SHEN D J, WANG Z Y, MEI L, et al.Review of microbial induced calcite precipitation ground improvement technique[J]. Journal of Jiangsu University of Science and Technology(natural science edition), 2017, 31(3): 390-398.
[6] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96-115.
LIU H L, ZHAO M H.Review of ground improvement technical and its application in China[J]. China civil engineering journal, 2016, 49(1): 96-115.
[7] 曹光辉, 刘士雨, 俞缙, 等. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用[J]. 高校地质学报, 2021, 27(6): 754-768.
CAO G H, LIU S Y, YU J, et al.Enzyme-induced calcium carbonate precipitation(EICP) and its application in geotechnical engineering[J]. Geological journal of China universities, 2021, 27(6): 754-768.
[8] 泮晓华, 唐朝生, 施斌. 微生物矿化作用改善不同孔隙砂岩抗冻融特性试验研究[J]. 高校地质学报, 2021, 27(6): 723-730.
PAN X H, TANG C S, SHI B.Experimental investigation of microbial induced calcite precipitation(MICP) improvement on freeze-thaw resistance of sandstone with various types of porosity[J]. Geological journal of China universities, 2021, 27(6): 723-730.
[9] 梁仕华, 牛九格, 房采杏, 等. 钙源对微生物沉积碳酸钙固化砂土的试验研究[J]. 工业建筑, 2018, 48(7): 10-15.
LIANG S H, NIU J G, FANG C X, et al.Experimental research on the effect of calcium source on microbial deposites of calcium carbonate[J]. Industrial construction, 2018, 48(7): 10-15.
[10] CHOU C W, SEAGREN E A, AYDILEK A H, et al.Biocalcification of sand through ureolysis[J]. Journal of geotechnical and geoenvironmental engineering, 2011, 137(12): 1179-1189.
[11] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of geotechnical and geoenvironmental engineering, 2006, 132(11): 1381-1392.
[12] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031.
ZHANG X L, CHEN Y M, ZHANG Z, et al.Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese journal of geotechnical engineering, 2020, 42(6): 1023-1031.
[13] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
CHENG X H, MA Q, YANG Z, et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese journal of geotechnical engineering, 2013, 35(8): 1486-1495.
[14] 余清鹏, 李娜, 符平, 等. 微生物灌浆加固砂土效果的试验研究[J]. 中国水利水电科学研究院学报, 2019, 17(3): 204-210.
YU Q P, LI N, FU P, et al.Experimental study on reinforcement effect of microbial grouting on sandy soil[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(3): 204-210.
[15] 程瑶佳, 唐朝生, 泮晓华, 等. 微生物矿化作用(MICP)-铺砂联合提高黄土抗侵蚀性试验研究[J]. 防灾减灾工程学报, 2022, 42(5): 1010-1018.
CHENG Y J, TANG C S, PAN X H, et al.Experimental study on erosion resistance improvement in loess through coupled microbial mineralization(MICP)-sand paving[J]. Journal of disaster prevention and mitigation engineering, 2022, 42(5): 1010-1018.
[16] 刘诗雅, 刘家庆, 周成, 等. 边坡植被恢复中MICP表层矿化格构填土的水土保持模型试验[J]. 岩土工程学报, 2022, 44(增刊1): 29-34.
LIU S Y, LIU J Q, ZHOU C, et al.Soil and water conservation model test of mineralized lattice fill on MICP surface in slope vegetation restoration[J]. Chinese journal of geotechnical engineering, 2022, 44(Sup 1): 29-34.
[17] 蔡红, 肖建章, 王子文, 等. 基于MICP技术的淤泥质土固化试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 249-253.
CAI H, XIAO J Z, WANG Z W, et al.Experimental study on solidification of soft clay based on MICP[J]. Chinese journal of geotechnical engineering, 2020, 42(Sup 1): 249-253.
[18] 刘雄. 宁波海相软土固化试验研究[D]. 南京: 东南大学, 2017.
LIU X.Experimental study on solidification of marine soft soil in Ningbo[D]. Nanjing: Southeast University, 2017.
[19] 王子文, 魏然, 蔡红, 等. 营养液浓度和微生物活性对MICP固化淤泥质土强度的影响[J]. 中国水利水电科学研究院学报, 2020, 18(6): 486-493.
WANG Z W, WEI R, CAI H, et al.Effect of nutrient solution concentration and microbial activity on MICP solidified strength of soft clay[J]. Journal of China Institute of Water Resources and Hydropower Research, 2020, 18(6): 486-493.
[20] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学(北京), 2014.
ZHAO Q.Experimental study on soil solidification by microbial-induced calcium carbonate precipitation (MICP)[D]. Beijing: China University of Geosciences, 2014.
[21] 孙希, 黄维平. 基于实测数据的海上风电大直径桩p-y曲线研究[J]. 太阳能学报, 2016, 37(1): 216-221.
SUN X, HUANG W P.Study on measured p-y curves of large diameter pile foundation of offshore wind power[J]. Acta energiae solaris sinica, 2016, 37(1): 216-221.
[22] 和文祥, 朱铭莪, 张一平. pH对汞镉与土壤脲酶活性关系的影响[J]. 西北农林科技大学学报(自然科学版), 2002, 30(3): 66-70.
HE W X, ZHU M E, ZHANG Y P.Effect of pH on relationship between soil urease activity and Hg, Cd[J]. Journal of Northwest A&F University(natural science edition), 2002, 30(3): 66-70.
[23] 孙潇昊. 微生物矿化机理与混凝土裂缝修复应用研究[D]. 南京: 东南大学, 2019.
SUN X H.Study on microbial mineralization mechanism and application of concrete crack repair[D]. Nanjing: Southeast University, 2019.
[24] JTG.3430—2020, 工路土工试验规程[S].
JTG.3430—2020, Test methods of soils for highway enginering[S].
[25] 肖海, 向瑞, 刘畅, 等. 聚丙烯酰胺(PAM)对三峡库区紫色土坡面片蚀的影响[J]. 水土保持学报, 2022, 36(5): 32-37.
XIAO H, XIANG R, LIU C, et al.Influence of polyacrylamide(PAM) on the sheet erosion process of purple soil in Three Gorges Reservoir area[J]. Journal of soil and water conservation, 2022, 36(5): 32-37.
[26] 刘文化, 孙阳, 张洪勇, 等. 结构性土非线性压缩特征本构模型[J]. 大连理工大学学报, 2022, 62(5): 501-508.
LIU W H, SUN Y, ZHANG H Y, et al.Constitutive model for nonlinear compression behavior of structured soils[J]. Journal of Dalian University of Technology, 2022, 62(5): 501-508.
[27] 彭长学, 杨光华. 软土e-p曲线确定的简化方法及在非线性沉降计算中的应用[J]. 岩土力学, 2008, 29(6): 1706-1710.
PENG C X, YANG G H.A simplified method for determining e-p curve of soft soil and its application to analyzing nonlinear settlement of foundation[J]. Rock and soil mechanics, 2008, 29(6): 1706-1710.
[28] 张乐涛, 高照良, 田红卫. 工程堆积体陡坡坡面土壤侵蚀水动力学过程[J]. 农业工程学报, 2013, 29(24): 94-102.
ZHANG L T, GAO Z L, TIAN H W.Hydrodynamic process of soil erosion in steep slope of engineering accumulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 94-102.
[29] 刘金昊, 张帆, 戴国亮. 基于静力触探的黏土中桩基p-y曲线研究[J]. 太阳能学报, 2023, 44(2): 172-180.
LIU J H, ZHANG F, DAI G L.Research on p-y curve of pile foundation in clay based on cpt data[J]. Acta energiae solaris sinica, 2023, 44(2): 172-180.

基金

宁波市科技创新2025重大专项(2018B10091;2022Z230);国家级大学生创新创业训练计划(202211058003)

PDF(2984 KB)

Accesses

Citation

Detail

段落导航
相关文章

/