混合储能辅助火电机组一次调频及其容量配置

严晓生, 刘仲稳, 赵建红, 韩旭, 韩中合

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 647-654.

PDF(2115 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2115 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 647-654. DOI: 10.19912/j.0254-0096.tynxb.2023-1151

混合储能辅助火电机组一次调频及其容量配置

  • 严晓生1,2, 刘仲稳1, 赵建红1, 韩旭1, 韩中合1
作者信息 +

PRIMARY FREQUENCY REGULATION AND CAPACITY CONFIGURATION OF HYBRID ENERGY STORAGE AUXILIARY THERMAL POWER UNIT

  • Yan Xiaosheng1,2, Liu Zhongwen1, Zhao Jianhong1, Han Xu1, Han Zhonghe1
Author information +
文章历史 +

摘要

为使火电机组更好地应对新型能源迅速发展背景下对原有电网结构带来的冲击,提升火电机组运行的稳定性、安全性及经济性,基于国内外研究现状,提出锂电池-飞轮控制策略与火电机组区域动态一次调频模型,并研究一定储能容量下飞轮-锂电池混合储能系统容量配置方案,以系统频率波动程度、波动峰值极差、实际贡献电量等指标对调频性能作出评价。通过Matlab/Simulink进行仿真验证,得出在连续扰动下系统频率波动程度为0.00119 pu,频率波动减小30.81%,功率波动减小43.65%,实际贡献电量增加23.17%。结果表明,在火电机组受到外界负荷扰动时,混合储能辅助火电机组调频可有效提高火电机组运行稳定性与经济性。

Abstract

In order to make thermal power units better cope with the impact on the original power grid structure under the background of rapid development of new energy sources, and improve the stability, safety and economy of thermal power unit operation, based on the current research status at home and abroad, the lithium battery-flywheel control strategy and the regional dynamic primary frequency regulation model of thermal power units are proposed, and the capacity configuration scheme of flywheel-lithium battery hybrid energy storage system under a certain energy storage capacity is studied, and the simulation verification is carried out through Matlab/Simulink, Under continuous disturbance, the frequency fluctuation degree of the system is 0.00119 pu, the fluctuation amount decreases by 30.81%, the power fluctuation decreases by 43.65%, and the actual power contribution increases by 23.17%. The results show that when the thermal power unit is disturbed by external load, the frequency regulation of hybrid energy storage auxiliary thermal power unit effectively improves the operation stability and economy of thermal power unit.

关键词

发电厂 / 飞轮 / 储能 / 一次调频 / 评价指标

Key words

power plants / flywheel / energy storage / primary frequency dynamic model / evaluation indicators

引用本文

导出引用
严晓生, 刘仲稳, 赵建红, 韩旭, 韩中合. 混合储能辅助火电机组一次调频及其容量配置[J]. 太阳能学报. 2024, 45(11): 647-654 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1151
Yan Xiaosheng, Liu Zhongwen, Zhao Jianhong, Han Xu, Han Zhonghe. PRIMARY FREQUENCY REGULATION AND CAPACITY CONFIGURATION OF HYBRID ENERGY STORAGE AUXILIARY THERMAL POWER UNIT[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 647-654 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1151
中图分类号: TK26    TM621   

参考文献

[1] 赵玉婷, 吕当振, 万代, 等. 分布式储能在配网中的应用及其经济性评估[J]. 湖南电力, 2022, 42(5): 53-59.
ZHAO Y T, LYU D Z, WAN D, et al.Application of distributed energy storage in distribution network and its economic evaluation[J]. Hunan electric power, 2022, 42(5): 53-59.
[2] 盛锴, 邹鑫, 邱靖, 等. 火电机组一次调频功率响应特性精细化建模[J]. 中国电力, 2021, 54(6): 111-118, 152.
SHENG K, ZOU X, QIU J, et al.Refined modeling for power response characteristic of thermal power unit under primary frequency control[J]. Electric power, 2021, 54(6): 111-118, 152.
[3] 黄怡涵, 徐飞, 郝玲, 等. 用于一次调频分析的汽包锅炉模型及参数在线确定方法[J]. 中国电机工程学报, 2023, 43(21): 8332-8343
HUANG Y H,XU F,HAO L,et al.drum boiler modeling and online parameter identification for analysis of primary frequency regulation[J]. Proceedings of the CSEE, 2023, 43(21): 8332-8343
[4] KARRARI S, DE CARNE G, NOE M.Model validation of a high-speed flywheel energy storage system using power hardware-in-the-loop testing[J]. Journal of energy storage, 2021, 43: 103177.
[5] 洪烽, 梁璐, 逄亚蕾, 等. 基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J]. 中国电机工程学报, 2023, 43(21): 8366-8378.
HONG F, LIANG L, PANG Y L, et al.Research on coordinated frequency control of thermal power-flywheel energy storage system based on the real-time prediction of output increment[J]. Proceedings of the CSEE, 2023, 43(21): 8366-8378.
[6] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[7] LEMOFOUET S, RUFER A.A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking (MEPT)[J]. IEEE transactions on industrial electronics, 2006, 53(4): 1105-1115.
[8] MARTINEZ M, MOLINA M G, FRACK F, et al.Dynamic modeling, simulation and control of hybrid energy storage system based on compressed air and supercapacitors[J]. IEEE Latin America transactions, 2013, 11(1): 466-472.
[9] 郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报, 2023, 35(11): 1-9.
GUO Q, CHEN C D, HU Y, et al.Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9.
[10] BARELLI L, BIDINI G, BONUCCI F, et al.Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants[J]. Energy, 2019, 173: 937-950.
[11] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(4): 75-81.
LIU Z M, QI G Y, GAO J G, et al.Research on optimal configuration of hybrid energy storage capacity based on adaptive VMD[J]. Acta energiae solaris sinica, 2022, 43(4): 75-81.
[12] 丁明, 吴杰, 张晶晶. 面向风电平抑的混合储能系统容量配置方法[J]. 太阳能学报, 2019, 40(3): 593-599.
DING M, WU J, ZHANG J J.Capacity optimization method of hybrid energy storage system for wind power smoothing[J]. Acta energiae solaris sinica, 2019, 40(3): 593-599.
[13] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606.
SUI Y R, LIANG S Y, HUANG D C, et al.Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606.
[14] 田云峰, 郭嘉阳, 刘永奇, 等. 用于电网稳定性计算的再热凝汽式汽轮机数学模型[J]. 电网技术, 2007, 31(5): 39-44.
TIAN Y F, GUO J Y, LIU Y Q, et al.A mathematical model of rehear turbine for power grid stability calculation[J]. Power system technology, 2007, 31(5): 39-44.
[15] 姚路锦, 王玮, 蔡玮, 等. 提升风电调频性能的源储协同控制策略[J]. 动力工程学报, 2023, 43(2): 126-135, 193.
YAO L J, WANG W, CAI W, et al.Cooperative control strategy of source and storage for improving frequency regulation performance of wind power[J]. Journal of Chinese society of power engineering, 2023, 43(2): 126-135, 193.
[16] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686.
HE L X, LI W Y.Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy s torage[J]. Energy storage science and technology, 2021, 10(5): 1679-1686.
[17] MERCIER P, CHERKAOUI R, OUDALOV A.Optimizing a battery energy storage system for frequency control application in an isolated power system[J]. IEEE transactions on power systems, 2009, 24(3): 1469-1477.
[18] 王腾, 张新燕, 王亚东, 等. 基于二阶滤波的混合储能系统能量管理控制策略[J]. 太阳能学报, 2022, 43(11): 399-405.
WANG T, ZHANG X Y, WANG Y D, et al.Energy management control strategy of hybrid energy storage system based on second-order filtering[J]. Acta energiae solaris sinica, 2022, 43(11): 399-405.

基金

保定市科技计划项目(2272P008);国家科技支撑计划项目(2014BAA06B01)

PDF(2115 KB)

Accesses

Citation

Detail

段落导航
相关文章

/