考虑风电最大效益的混合储能双层平抑控制模型

刘昕, 谢丽蓉, 马兰, 叶家豪, 卞一帆, 崔传世

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 596-605.

PDF(1379 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1379 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 596-605. DOI: 10.19912/j.0254-0096.tynxb.2023-1157

考虑风电最大效益的混合储能双层平抑控制模型

  • 刘昕, 谢丽蓉, 马兰, 叶家豪, 卞一帆, 崔传世
作者信息 +

HYBRID ENERGY STORAGE TWO-LAYER SMOOTHING CONTROL MODEL CONSIDERING MAXIMUM BENEFIT OF WIND POWER

  • Liu Xin, Xie Lirong, Ma Lan, Ye Jiahao, Bian Yifan, Cui Chuanshi
Author information +
文章历史 +

摘要

针对风电场配置混合储能平抑风电波动场景进行研究,以满足并网要求为前提考虑风电场最大效益,提出建立一种基于共振稀疏分解(RSSD)与改进的具备自适应噪声的完全集成经验模态分解(ICEEMDAN)的自适应RSSD-ICEEMDAN混合储能平抑-配置双层规划模型。上层以风电并网功率变量最小、储能出力最小及储能充放电平衡为目标函数,采用自适应RSSD求解出混合储能充放电总控制功率,通过ICEEMDAN对混合储能充放电总控制功率进行分解并根据均值法原则分配蓄电池和超级电容器控制功率,为实现效益最大化,对分配结果进行二次修正。在上层的基础上建立下层以净效益最大、混合储能波动最小及混合储能充放电效果最佳为目标函数的混合储能最优容量配置模型,上下层相互制约实现满足并网要求的同时达到最大效益,通过多目标人工蜂鸟算法对最佳配置进行寻优求解。通过对新疆某20 MW风电场进行仿真分析,对所提模型的合理性、有效性及经济性进行验证。

Abstract

This paper studies the scenario of wind farm deploying hybrid energy storage to smooth wind power fluctuations, considers the maximum benefit of wind farms on the premise of meeting the grid-connection requirements, and proposes to establish an adaptive RSSD-ICEEMDAN hybrid energy storage smoothing-configured two-layer planning model based on the resonance sparse decomposition (RSSD) and the improved fully-integrated empirical modal decomposition with adaptive noise (ICEEMDAN), and to establish a two-layer planning model for wind farm configuration hybrid energy storage smoothing-configured two-layer planning model. The upper layer takes the minimum wind power grid-connected power variable, the minimum energy storage output and the balance of energy storage charging and discharging as the objective function, solves the total control power of hybrid energy storage charging and discharging with adaptive RSSD, decomposes the total control power of hybrid energy storage charging and discharging with ICEEMDAN, and distributes the control power of battery and supercapacitor according to the principle of the mean value method. The distribution result is corrected twice in order to achieve the maximization of the benefit. On the basis of the upper layer, the optimal capacity allocation model of hybrid energy storage is established in the lower layer with the objective function of maximizing the net benefit, minimizing the fluctuation of hybrid energy storage and optimizing the charging and discharging effect of hybrid energy storage, and the upper and lower layers are mutually constrained to achieve the maximum benefit while meeting the requirements of the grid connection, and the optimal configuration is solved by the multi-objective artificial hummingbird algorithm for optimal searching. The rationality, validity and economy of the proposed model are verified by simulation analysis of a 20 MW wind farm in Xinjiang.

关键词

风力发电 / 混合储能系统 / 平抑功率波动 / 储能容量配置 / 共振稀疏分解

Key words

wind power generation / hybrid energy storage system / smoothing power fluctuations / storage capacity allocation / resonant sparse decomposition

引用本文

导出引用
刘昕, 谢丽蓉, 马兰, 叶家豪, 卞一帆, 崔传世. 考虑风电最大效益的混合储能双层平抑控制模型[J]. 太阳能学报. 2024, 45(12): 596-605 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1157
Liu Xin, Xie Lirong, Ma Lan, Ye Jiahao, Bian Yifan, Cui Chuanshi. HYBRID ENERGY STORAGE TWO-LAYER SMOOTHING CONTROL MODEL CONSIDERING MAXIMUM BENEFIT OF WIND POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 596-605 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1157
中图分类号: TM614   

参考文献

[1] 马伟, 乔颖, 谢丽蓉, 等. 考虑气象特征波动划分阈值的双目标短期风功率预测[J]. 高电压技术, 2022, 48(10): 4154-4162.
MA W, QIAO Y, XIE L R, et al.Short-term wind power prediction with dual targets considering the threshold of meteorological characteristic fluctuation partition[J]. High voltage engineering, 2022, 48(10): 4154-4162.
[2] 贺鸿杰, 张宁, 杜尔顺, 等. 电网侧大规模电化学储能运行效率及寿命衰减建模方法综述[J]. 电力系统自动化, 2020, 44(12): 193-207.
HE H J, ZHANG N, DU E S, et al.Review on modeling method for operation efficiency and lifespan decay of large-scale electrochemical energy storage on power grid side[J]. Automation of electric power systems, 2020, 44(12): 193-207.
[3] 张雯雯, 魏震波, 郭毅, 等. 含混合储能的交直流配电网日经济优化运行[J]. 高电压技术, 2022, 48(2): 565-576.
ZHANG W W, WEI Z B, GUO Y, et al.Optimal daily economic operation of AC/DC distribution network with hybrid energy storage[J]. High voltage engineering, 2022, 48(2): 565-576.
[4] 贾兆昊, 张峰, 丁磊. 考虑功率四象限输出的配电网储能优化配置策略[J]. 电力系统自动化, 2020, 44(2): 105-113.
JIA Z H, ZHANG F, DING L.Optimal allocation strategy of energy storage in distribution network considering power four-quadrant output[J]. Automation of electric power systems, 2020, 44(2): 105-113.
[5] 何俊强, 师长立, 马明, 等. 基于元模型优化算法的混合储能系统双层优化配置方法[J]. 电力自动化设备, 2020, 40(7): 157-167.
HE J Q, SHI C L, MA M, et al.Bi-level optimal configuration method of hybrid energy storage system based on meta model optimization algorithm[J]. Electric power automation equipment, 2020, 40(7): 157-167.
[6] 刘海涛, 许伦, 郝思鹏, 等. 基于配电网分区的分布式混合储能优化方法[J]. 电力自动化设备, 2020, 40(5): 137-145.
LIU H T, XU L, HAO S P, et al.Optimization method of distributed hybrid energy storage based on distribution network partition[J]. Electric power automation equipment, 2020, 40(5): 137-145.
[7] ZHANG W J, HUANG W.Multivariate load prediction method for integrated energy system based on CEEMD-LSTM[J]. IOP conference series: earth and environmental science, 2021, 772(1): 012055.
[8] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[9] 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443.
MA L, WEI C W, XIE L R, et al.Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta energiae solaris sinica, 2021, 42(10): 437-443.
[10] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3): 1016-1029.
MA L, XIE L R, YE L, et al.Wind power fluctuation suppression strategy based on hybrid energy storage bi-level programming model[J]. Power system technology, 2022, 46(3): 1016-1029.
[11] SELESNICK I W.Resonance-based signal decomposition: a new sparsity-enabled signal analysis method[J]. Signal processing, 2011, 91(12): 2793-2809.
[12] ZHAO W G, ZHANG Z X, MIRJALILI S, et al.An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems[J]. Computer methods in applied mechanics and engineering, 2022, 398: 115223.
[13] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic, 2011: 4144-4147.
[14] 葛玉友, 尚策. 寿命约束的储能规划[J]. 中国电机工程学报, 2020, 40(19): 6150-6161.
GE Y Y, SHANG C.Energy storage planning constrained by its life[J]. Proceedings of the CSEE, 2020, 40(19): 6150-6161.
[15] 卞一帆, 谢丽蓉, 鲁宗相, 等. 基于多主体投资的双储能系统分层优化配置方案[J]. 电力系统自动化, 2023, 47(1): 63-73.
BIAN Y F, XIE L R, LU Z X, et al.Multi-agent investment based hierarchical optimal configuration scheme for dual energy storage system[J]. Automation of electric power systems, 2023, 47(1): 63-73.

基金

国家自然科学基金(62163034); 天山英才高层次领军人才(2022TSYCLJ0017); 新疆维吾尔自治区重大科技专项(2022A01007-4); 新疆维吾尔自治区自然科学基金(2022D01C664)

PDF(1379 KB)

Accesses

Citation

Detail

段落导航
相关文章

/