基于视觉振动测量的漂浮式风力机状态监测方法研究

唐一皓, 温斌荣, 张航, 田新亮, 周归勇, 彭志科

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 206-213.

PDF(2867 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2867 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 206-213. DOI: 10.19912/j.0254-0096.tynxb.2023-1160

基于视觉振动测量的漂浮式风力机状态监测方法研究

  • 唐一皓1,2, 温斌荣1,2, 张航1,2, 田新亮1,2, 周归勇3, 彭志科4
作者信息 +

CONDITION MONITORING OF FLOATING WIND TURBINES WITH VISION-BASED VIBRATION MEASUREMENT METHOD

  • Tang Yihao1,2, Wen Binrong1,2, Zhang Hang1,2, Tian Xinliang1,2, Zhou Guiyong3, Peng Zhike4
Author information +
文章历史 +

摘要

以基于视觉的振动测量方法为基础,结合二维运动解析方法,提出一种基于视觉振动测量的漂浮式风力机(FWT)状态监测方法,可实现漂浮式风力机平台运动和塔筒振动的同步精准监测。虚拟运动仿真视频中,所提方法对漂浮式风力机运动/振动的识别误差不大于1%;在背景噪声干扰下,除漂浮式平台纵摇运动外,其他自由度运动识别误差小于5%。将所提方法应用于浮式风力机模型试验的运动/振动识别中,可实现对漂浮式风力机状态的良好识别。

Abstract

A condition monitoring method combining vision-based vibration measurement and two-dimensional motion analysis is proposed for floating wind turbines(FWTs). It enables non-contact and precise measurements of the platform motions and the tower vibration of an FWT simultaneously. Virtual motion simulation videos show that the relative error of the proposed method is less than 1%. When the simulated visual video encounters strong noise interferences, the recognition errors of all other responses (except the floater pitch) is no more than 5%. Furthermore, the proposed method is applied to the motion/vibration recognitions of a FWT model test, further validating its feasibility and reliability.

关键词

漂浮式风力机 / 振动测量 / 状态监测 / 塔筒振动 / 平台运动

Key words

offshore wind turbines / vibration measurement / condition monitoring / tower vibration / platform motion

引用本文

导出引用
唐一皓, 温斌荣, 张航, 田新亮, 周归勇, 彭志科. 基于视觉振动测量的漂浮式风力机状态监测方法研究[J]. 太阳能学报. 2024, 45(12): 206-213 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1160
Tang Yihao, Wen Binrong, Zhang Hang, Tian Xinliang, Zhou Guiyong, Peng Zhike. CONDITION MONITORING OF FLOATING WIND TURBINES WITH VISION-BASED VIBRATION MEASUREMENT METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 206-213 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1160
中图分类号: TK83   

参考文献

[1] 侯梅芳, 潘松圻, 刘翰林. 世界能源转型大势与中国油气可持续发展战略[J]. 天然气工业, 2021, 41(12): 9-16.
HOU M F, PAN S Q, LIU H L.World energy trend and China's oil and gas sustainable development strategies[J]. Natural gas industry, 2021, 41(12): 9-16.
[2] MENG L, ZHOU T, HE Y P, et al.Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine[J]. China ocean engineering, 2017, 31(5): 567-577.
[3] 陈迪郁, 刘利琴, 李焱, 等. 基于面元法和FEM的海上浮式风力机叶片动力响应研究[J]. 太阳能学报, 2023, 44(6): 374-382.
CHEN D Y, LIU L Q, LI Y, et al.Dynamic response analysis of floating offshore wind turbines blades based on panel method and finite element method[J]. Acta energiae solaris sinica, 2023, 44(6): 374-382.
[4] SKAARE B, NIELSEN F G, HANSON T D, et al.Analysis of measurements and simulations from the Hywind Demo floating wind turbine[J]. Wind energy, 2015, 18(6): 1105-1122.
[5] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
WEN B R, TIAN X L, LI Z W, et al.Coupling dynamics of floating wind turbines: history, progress and challenges[J]. Advances in mechanics, 2022, 52(4): 731-808.
[6] YANG W X, TIAN W Y, HVALBYE O, et al.Experimental research for stabilizing offshore floating wind turbines[J]. Energies, 2019, 12(10): 1947.
[7] 孙少恒. 浮式风机塔筒和系泊系统结构可靠性研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
SUN S H.Study on structural reliability of tower and system of offshore floating wind turbines[D]. Harbin: Harbin Engineering University, 2016.
[8] ADHIKARI S, BHATTACHARYA S.Dynamic analysis of wind turbine towers on flexible foundations[J]. Shock and vibration, 2012, 19(1): 37-56.
[9] 胡志强. 浮式风机动力响应分析关键技术综述[J]. 船舶与海洋工程, 2020, 36(6): 1-13.
HU Z Q.A review on the key technologies of dynamic response prediction of floating offshore wind turbines[J]. Naval architecture and ocean engineering, 2020, 36(6): 1-13.
[10] 赵志新, 施伟, 王文华, 等. 二阶波浪力下超大型半潜浮式风力机动态响应分析[J]. 太阳能学报, 2023, 44(1): 335-345.
ZHAO Z X, SHI W, WANG W H, et al.Dynamic response analysis of an ultra-large semi-submersible floating wind turbine under second-order wave forces[J]. Acta energiae solaris sinica, 2023, 44(1): 335-345.
[11] BROWNJOHN J M W, XU Y, HESTER D. Vision-based bridge deformation monitoring[J]. Frontiers in built environment, 2017, 3: 23.
[12] LIU F S, YU Q X, LI H Y, et al.Field data observations for monitoring the impact of typhoon “In-fa” on dynamic performances of mono-pile offshore wind turbines: a novel systematic study[J]. Marine structures, 2023, 89: 103373.
[13] DUAN F, HU Z Q, NIEDZWECKI J M.Model test investigation of a spar floating wind turbine[J]. Marine structures, 2016, 49: 76-96.
[14] 欧进萍, 肖仪清, 黄虎杰, 等. 海洋平台结构实时安全监测系统[J]. 海洋工程, 2001, 19(2): 1-6.
OU J P, XIAO Y Q, HUANG H J, et al.Real time safety monitoring system for offshore platform structures[J]. The ocean engineering, 2001, 19(2): 1-6.
[15] FARRAR C R, DARLING T W, MIGLIORI A, et al.Microwave interferometers for non-contact vibration measurements on large structures[J]. Mechanical systems and signal processing, 1999, 13(2): 241-253.
[16] LI S X, XIONG Y Y, SHEN X T, et al.Multi-scale and full-field vibration measurement via millimetre-wave sensing[J]. Mechanical systems and signal processing, 2022, 177: 109178.
[17] STANBRIDGE A B, KHAN A Z, EWINS D J.Modal testing using impact excitation and a scanning LDV[J]. Shock and vibration, 2000, 7(2): 91-100.
[18] WANG N N, RI K, LIU H, et al.Structural displacement monitoring using smartphone camera and digital image correlation[J]. IEEE sensors journal, 2018, 18(11): 4664-4672.
[19] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial intelligence, 1981,17: 185-203.
[20] WADHWA N, RUBINSTEIN M, DURAND F, et al.Phase-based video motion processing[J]. ACM transactions on graphics, 2013, 32(4): 1-10.
[21] WADHWA N, CHEN J G, SELLON J B, et al.Motion microscopy for visualizing and quantifying small motions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11639-11644.
[22] CHEN J G, WADHWA N, CHA Y J, et al.Modal identification of simple structures with high-speed video using motion magnification[J]. Journal of sound and vibration, 2015, 345: 58-71.
[23] JURJO D L B R, MAGLUTA C, ROITMAN N, et al. Experimental methodology for the dynamic analysis of slender structures based on digital image processing techniques[J]. Mechanical systems and signal processing, 2010, 24(5): 1369-1382.
[24] JAVH J, SLAVIČ J, BOLTEŽAR M. The subpixel resolution of optical-flow-based modal analysis[J]. Mechanical systems and signal processing, 2017, 88: 89-99.
[25] CHEN J G, WADHWA N, CHA Y J, et al.Structural modal identification through high speed camera video: motion magnification[C]//Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, USA, 2014: 191-197.
[26] SIRINGORINGO D M, WANGCHUK S, FUJINO Y.Noncontact operational modal analysis of light poles by vision-based motion-magnification method[J]. Engineering structures, 2021, 244: 112728.
[27] COLLIER S, DARE T.Informed pixel pushing: a new method of large-motion handling for phase-based optical flow[J]. Measurement, 2023, 213: 112711.
[28] FLEET D J, JEPSON A D.Computation of component image velocity from local phase information[J]. International journal of computer vision, 1990, 5(1): 77-104.
[29] SIMONCELLI E P, FREEMAN W T, ADELSON E H, et al.Shiftable multiscale transforms[J]. IEEE transactions on information theory, 1992, 38(2): 587-607.
[30] FOGEL I, SAGI D.Gabor filters as texture discriminator[J]. Biological cybernetics, 1989, 61(2): 103-113.
[31] SIMONCELLI E P, FREEMAN W T.The steerable pyramid: a flexible architecture for multi-scale derivative computation[C]//Proceedings., International Conference on Image Processing. Washington, DC, USA, 1995: 444-447.

基金

国家自然科学基金(12102251); 海南省科技计划三亚崖州湾科技城联合项目(2021CXLH0023); 国家电力投资集团有限公司-上海交通大学“未来能源计划联合基金”基金项目; 水声对抗重点实验室开放基金项目资助国防科技重点实验室基金(JCKY2022207CH05)

PDF(2867 KB)

Accesses

Citation

Detail

段落导航
相关文章

/