以区域综合能源系统为研究对象,首先开展能源系统的优化策略分析工作,然后针对能效、经济、环境进行多目标优化求解,最后引入犹豫评价,建立并应用改进最优最劣法(HBWM)-熵权法的主客观权重评价体系,得到最优系统配置和运行规划。结果表明:优化设计策略有效解决了多能协同问题;相较于传统冷热电联供系统,最优系统减少14.9%化石燃料消耗、8.9%年投资成本、4.7%度能成本、14.9%碳排放量和18.1%用水消耗,在能源、经济、环保3个方面有明显优势。
Abstract
Taking the regional integrated energy system as the research object, the study firstly conducts an optimization strategy analysis. Then, a multi-objective optimization is carried out, specifically targeting energy efficiency, economy, and environment. Subsequently, using an improved BWM method (HWBM) combined with the entropy weight method, an objective-subjective weight evaluation system is established, leading to the determination of an optimal system configuration and operational planning. Findings reveal that the design strategy effectively addresses the multi-energy coordination issue. Compared to the traditional combined cooling, heating, and power system, the optimal system achieves a 14.9% reduction in fossil fuel consumption, 8.9% in annual investment costs, 4.7% in energy costs per degree, 14.9% in carbon emissions, and 18.1% in water consumption. The outcomes emphasize the notable advantages in energy, economy, and environmental protection.
关键词
区域综合能源系统 /
多目标优化 /
犹豫评价 /
主客观权重法
Key words
regional integrated energy systems /
multi-objective optimization /
hesitant evaluation /
subjective and objective weighting method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴江, 王晶晶, 张强, 等. 考虑电转气消纳风电的电-气综合能源系统两阶段鲁棒协同调度[J]. 太阳能学报, 2022, 43(2): 436-443.
WU J, WANG J J, ZHANG Q, et al.Two-stage robust cooperative scheduling for electricity-gas integrated energy system considering power-to-gas for wind power accommodation[J]. Acta energiae solaris sinica, 2022, 43(2): 436-443.
[2] 汪德成, 李妍, 张群, 等. 冷热电储一体化综合能源系统优化研究[J]. 太阳能学报, 2023, 44(6): 130-136.
WANG D C, LI Y, ZHANG Q, et al.Research on optimization of cooling, heating, electricity and storage multi-energy coupling system[J]. Acta energiae solaris sinica, 2023, 44(6): 130-136.
[3] 韩旭, 周峻毅, 李奇, 等. 计及碳排放成本的风光燃储综合能源系统规划[J]. 动力工程学报, 2022, 42(9): 873-880.
HAN X, ZHOU J Y, LI Q, et al.Study on optimization of wind, solar, fuel and storage integrated energy system taking into account the cost of carbon emissions[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 873-880.
[4] 黄宇, 王宇涛, 李淑琴, 等. 计及(<inline-graphic xlink:href="-45-12-606.xml/img_1.png"/>)分析的综合能源系统多目标优化调度[J]. 太阳能学报, 2022, 43(7): 30-38.
HUANG Y, WANG Y T, LI S Q, et al.Multi-objective optimal scheduling of integrated energy system with thermodynamic exergy analysis method[J]. Acta energiae solaris sinica, 2022, 43(7): 30-38.
[5] 沈萌, 张干, 张可爱. 园区级区域综合能源系统综合评价方法及应用[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 52-65.
SHEN M, ZHANG G, ZHANG K A.Comprehensive evaluation method and application study of campus-level regional integrated energy system[J]. Journal of Beijing Institute of Technology (social sciences edition), 2022, 24(4): 52-65.
[6] BAMISILE O, HUANG Q, DAGBASI M, et al.Steady-state and process modeling of a novel wind-biomass comprehensive energy system: an energy conservation, exergy and performance analysis[J]. Energy conversion and management, 2020, 220: 113139.
[7] KUCZYNSKI W, CHLISZCZ K.Energy and exergy analysis of photovoltaic panels in northern Poland[J]. Renewable and sustainable energy reviews, 2023, 174: 113138.
[8] 任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热电联供系统优化[J]. 工程热物理学报, 2021, 42(1): 16-24.
REN F K, CHEN Y, WANG J J.Optimization of combined cooling, heating, and power system coupled with solar and geothermal energies[J]. Journal of engineering thermophysics, 2021, 42(1): 16-24.
[9] 程杉, 黄天力, 魏荣宗. 含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J]. 电力系统自动化, 2019, 43(5): 30-38.
CHENG S, HUANG T L, WEI R Z.Multi-time-scale optimal scheduling of CCHP microgrid with ice-storage air-conditioning[J]. Automation of electric power systems, 2019, 43(5): 30-38.
[10] WANG Y L, HUANG F F, TAO S Y, et al.Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy[J]. Applied energy, 2022, 306: 118120.
[11] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE transactions on evolutionary computation, 2004, 8(3): 256-279.
[12] TAN Y T, WANG X L, LIU X G, et al.Comparison of AHP and BWM methods based on ArcGIS for ecological suitability assessment of Panax notoginseng in Yunnan Province, China[J]. Industrial crops and products, 2023, 199: 116737.
[13] HEIDARY-DAHOOIE J, RAFIEE M, MOHAMMADI M, et al.Proposing a new LSGDM framework based on BWM with hesitant fuzzy information for prioritizing blockchain adoption barriers in supply chain[J]. Technology in society, 2022, 71: 102146.
[14] XU Y, LIU S F, WANG J, et al.Consensus checking and improving methods for AHP with q-rung dual hesitant fuzzy preference relations[J]. Expert systems with applications, 2022, 208: 117902.
[15] ALI A, RASHID T.Hesitant fuzzy best-worst multi-criteria decision-making method and its applications[J]. International journal of intelligent systems, 2019, 34(8): 1953-1967.
[16] DONEGAN H A, DODD F J.A note on saaty's random indexes[J]. Mathematical and computer modelling, 1991, 15(10): 135-137.
[17] YANG J Z, YANG Z, DUAN Y Y.Optimal capacity and operation strategy of a solar-wind hybrid renewable energy system[J]. Energy conversion and management, 2021, 244: 114519.
[18] LIU Z J, LI Y, FAN G Y, et al.Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios[J]. Energy, 2022, 247: 123553.
[19] PEARSON K. VⅡ. Note on regression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London, 1895, 58(347-352): 240-242.
基金
河北省自然科学基金(E2022502017); 国家自然科学基金(52177084)