不同铂碳比下PEMFC梯度阴极催化层性能数值模拟

程友良, 丁瑞, 毛绍宽, 樊小朝

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 738-746.

PDF(3654 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3654 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 738-746. DOI: 10.19912/j.0254-0096.tynxb.2023-1173

不同铂碳比下PEMFC梯度阴极催化层性能数值模拟

  • 程友良1,2, 丁瑞1,2, 毛绍宽1,2, 樊小朝3
作者信息 +

NUMERICAL SIMULATION ON PERFORMANCE OF PEMFC WITH GRADIENT CATHODE CATALYST LAYER AT DIFFERENT Pt/C RATIOS

  • Cheng Youliang1,2, Ding Rui1,2, Mao Shaokuan1,2, Fan Xiaochao3
Author information +
文章历史 +

摘要

建立耦合团聚物模型的二维、两相、非等温的质子交换膜燃料电池(PEMFC)模型,研究在不同铂碳比(Pt/C比)下,阴极催化层(CCL)梯度设计对燃料电池性能的影响。结果表明,当Pt/C比为0.6时,铂载量梯度设计能增强燃料电池性能,但当Pt/C比为0.3时会削弱其性能。而对于铂载量和电解质含量梯度设计,随着Pt/C比降低到0.3,该设计有更低的氧局部传输阻力,使其氧气供应更充足、浓差损失减少、氧饥饿现象消失,从而实现电流密度增幅进一步增大。

Abstract

A two-dimensional, two-phase, non-isothermal proton exchange membrane fuel cell (PEMFC) model coupled with agglomerate model is established to study the influence of gradient design of cathode catalyst layer (CCL) on the fuel cell performance at different Pt/C ratios. The research results indicate that when the Pt/C ratio is 0.6, the gradient Pt loading design could enhance the fuel cell performance while weaking the fuel cell performance as the Pt/C ratio is 0.3. For the gradient CCL designs of Pt loading and ionomer content, as the Pt/C ratio decreases to 0.3, the designs have less local oxygen transfer resistance, resulting in a sufficient oxygen supply, reduced concentration loss, and the disappearance of oxygen starvation phenomenon, thereby achieving more increase in current density.

关键词

质子交换膜燃料电池 / 数值模拟 / 传质 / 梯度阴极催化层 / 铂碳比 / 氧饥饿

Key words

proton exchange membrane fuel cell (PEMFC) / numerical simulation / mass transfer / gradient cathode catalyst layer / Pt/C ratio / oxygen starvation

引用本文

导出引用
程友良, 丁瑞, 毛绍宽, 樊小朝. 不同铂碳比下PEMFC梯度阴极催化层性能数值模拟[J]. 太阳能学报. 2024, 45(11): 738-746 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1173
Cheng Youliang, Ding Rui, Mao Shaokuan, Fan Xiaochao. NUMERICAL SIMULATION ON PERFORMANCE OF PEMFC WITH GRADIENT CATHODE CATALYST LAYER AT DIFFERENT Pt/C RATIOS[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 738-746 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1173
中图分类号: TM911.48   

参考文献

[1] 武生威, 付丽荣, 刘维峰, 等. 新型拓展流道PEMFC传质模拟与性能研究[J]. 太阳能学报, 2023, 44(5): 74-79.
WU S W, FU L R, LIU W F, et al.Mass transfer simulation and performance study of pemfc with new extended flow channel[J]. Acta energiae solaris sinica, 2023, 44(5): 74-79.
[2] WANG Y L, LIU T, SUN H, et al.Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells[J]. Electrochimica acta, 2020, 353: 136491.
[3] GARSANY Y, ATKINSON R W, GOULD B D, et al.Dual-layer catalyst layers for increased proton exchange membrane fuel cell performance[J]. Journal of power sources, 2021, 514: 230574.
[4] WANG Y L, WANG S X, HE W, et al.Numerical investigation of tridirectionally synergetic Nafion® ionomer gradient cathode catalyst layer for polymer electrolyte membrane fuel cells[J]. International journal of hydrogen energy, 2022, 47(71): 30627-30638.
[5] XING L, XU Y X, PENGA Ž, et al.A segmented fuel cell unit with functionally graded distributions of platinum loading and operating temperature[J]. Chemical engineering journal, 2021, 406: 126889.
[6] SHAHGALDI S, OZDEN A, LI X G, et al.Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells[J]. Energy conversion and management, 2018, 171: 1476-1486.
[7] CETINBAS F C, ADVANI S G, PRASAD A K.Optimization of polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition[J]. Electrochimica acta, 2015, 174: 787-798.
[8] FAN R J, CHANG G F, XU Y M, et al.Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC[J]. Energy, 2023, 262: 125580.
[9] 代世勋, 曹爱红, 王来华. 基于多模型的Z型流道燃料电池的性能优化[J]. 太阳能学报, 2022, 43(6): 476-485.
DAI S X, CAO A H, WANG L H.Performance optimization of z-channel fuel cell based on multi-model[J]. Acta energiae solaris sinica, 2022, 43(6): 476-485.
[10] HE P, MU Y T, PARK J W, et al.Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell[J]. Applied energy, 2020, 277: 115555.
[11] MA X, ZHANG X Q, YANG J P, et al.Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells[J]. Energy conversion and management, 2021, 227: 113579.
[12] YUAN H, DAI H F, MING P W, et al.A new insight into the effects of agglomerate parameters on internal dynamics of proton exchange membrane fuel cell by an advanced impedance dimension model[J]. Energy, 2022, 253: 124202.
[13] XING L, DAS P K, SONG X G, et al.Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: the interaction of Nafion® ionomer content and cathode relative humidity[J]. Applied energy, 2015, 138: 242-257.
[14] XU Y M, CHANG G F, FAN R J, et al.Effects of various operating conditions and optimal ionomer-gradient distribution on temperature-driven water transport in cathode catalyst layer of PEMFC[J]. Chemical engineering journal, 2023, 451: 138924.
[15] ZHANG X Q, YANG J P, MA X, et al.Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: focusing on mass transport[J]. Energy, 2022, 254: 124103.
[16] XIE B, ZHANG G B, XUAN J, et al.Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer[J]. Energy conversion and management, 2019, 199: 112051.
[17] WANG N, QU Z G, JIANG Z Y, et al.A unified catalyst layer design classification criterion on proton exchange membrane fuel cell performance based on a modified agglomerate model[J]. Chemical engineering journal, 2022, 447: 137489.
[18] 赵杰, 李文浩, 杜常清, 等. 不同操作和环境条件下的PEMFC低温冷启动数值模拟研究[J]. 太阳能学报, 2022, 43(6): 460-466.
ZHAO J, LI W H, DU C Q, et al.Numerical simulation study of low temperature cold start of PEMFC under different operating and environmental conditions[J]. Acta energiae solaris sinica, 2022, 43(6): 460-466.
[19] ZHANG X Q, MA X, SHUAI S J, et al.Effect of micro-porous layer on PEM fuel cells performance: considering the spatially variable properties[J]. International journal of heat and mass transfer, 2021, 178: 121592.
[20] XU Y M, FAN R J, CHANG G F, et al.Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model[J]. Energy conversion and management, 2021, 248: 114791.
[21] 焦魁, 王博文, 杜青. 质子交换膜燃料电池水热管理[M]. 北京: 科学出版社, 2020: 170.
JIAO K, WANG B W, DU Q.Hydrothermal management of proton exchange membrane fuel cell[M]. Beijing: Science Press, 2020: 170.

基金

国家自然科学基金(52266018);新疆工程学院博士启动金项目(2023XGYBQJ01);新疆天山英才青年科技拔尖人才项目(2022TSYCCX0051)

PDF(3654 KB)

Accesses

Citation

Detail

段落导航
相关文章

/