含碳捕集机组的虚拟电厂热电联合随机优化调度

袁桂丽, 张睿, 赵洵, 张国斌, 李洪波, 杭晨辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 627-636.

PDF(1342 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1342 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 627-636. DOI: 10.19912/j.0254-0096.tynxb.2023-1177

含碳捕集机组的虚拟电厂热电联合随机优化调度

  • 袁桂丽1, 张睿1, 赵洵1, 张国斌2, 李洪波3, 杭晨辉3
作者信息 +

STOCHASTIC OPTIMAL DISPATCH OF COMBINED HEAT AND POWER IN VIRTUAL POWER PLANT WITH CARBON CAPTURE UNITS

  • Yuan Guili1, Zhang Rui1, Zhao Xun1, Zhang Guobin2, Li Hongbo3, Hang Chenhui3
Author information +
文章历史 +

摘要

为应对“三北”地区风光发电的随机性、间歇性、不确定性以及在风电大发期,燃煤热电联产机组“以热定电”的运行方式使其灵活调节能力不足的问题,该文运用拉丁超立方采样法模拟次日风光出力场景,基于一定置信水平预留旋转备用,通过碳捕集设备提供电量备用优化虚拟电厂旋转备用容量,建立含碳捕集热电机组的虚拟电厂热电联合日前随机优化调度模型,采用二次插值法与自适应遗传算法求解模型。仿真表明,通过碳捕集设备辅助电量备用,可权衡虚拟电厂的旋转备用预留和低碳运行,减少弃风弃光,降低旋转备用成本,实现电力系统的安全低碳经济运行。

Abstract

In order to cope with the randomness, intermittency and uncertainty of wind power generation in the “Three North” region, particularly during periods of high wind power generation, the operation mode of coal-fired Cogeneration units that “determine power by heat”is insufficient for flexible adjustment. For this reason, the Latin hypercube sampling method is used to simulate the next day's wind and power output scenario, determine the spinning reserve based on a certain confidence level, and optimize the rotating reserve capacity of virtual power plant by providing power reserve through carbon capture equipment. A day-ahead stochastic optimal scheduling model of combined heat and power of virtual power plant containing carbon capture thermal power units is established, and the model is solved by using quadratic interpolation method and adaptive genetic algorithm. The simulation shows that the auxiliary power reserve of carbon capture equipment can balance the reserve of rotating reserve and low-carbon operation of virtual power plant, reduce wind and solar curtailment, reduce the cost of rotating reserve, and realize safe and low-carbon economy operation of power system.

关键词

热电联产机组 / 旋转备用 / 虚拟电厂 / 拉丁超立方采样 / 不确定性

Key words

combined heat and power / spinning reserve / virtual power plant / Latin hypercube sampling / uncertainty

引用本文

导出引用
袁桂丽, 张睿, 赵洵, 张国斌, 李洪波, 杭晨辉. 含碳捕集机组的虚拟电厂热电联合随机优化调度[J]. 太阳能学报. 2024, 45(12): 627-636 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1177
Yuan Guili, Zhang Rui, Zhao Xun, Zhang Guobin, Li Hongbo, Hang Chenhui. STOCHASTIC OPTIMAL DISPATCH OF COMBINED HEAT AND POWER IN VIRTUAL POWER PLANT WITH CARBON CAPTURE UNITS[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 627-636 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1177
中图分类号: TM73   

参考文献

[1] 袁桂丽, 贾新潮, 陈少梁, 等. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
YUAN G L, JIA X C, CHEN S L, et al.Multiobjective optimal dispatch considering source-load coordination for virtual power plant[J]. Acta energiae solaris sinica, 2021, 42(5): 105-112.
[2] 葛延峰, 苏安龙, 傅予, 等. 电热联合系统的多级协调调度策略[J]. 电子设计工程, 2019, 27(4): 103-108.
GE Y F, SU A L, FU Y, et al.Multi level coordinated scheduling strategy for electric heating combined system[J]. Electronic design engineering, 2019, 27(4): 103-108.
[3] 胡明. 推动能源耦合发展突破行业用能壁垒[N]. 中国能源报, 2020-12-14(4).
HU M. Promote energy coupling development and break through industry energy barriers[N]. China energy news, 2020-12-14 (4).
[4] 王庆华. 火力发电企业碳排放成本核算研究[J]. 低碳世界, 2019, 9(8): 142-143.
WANG Q H.Research on carbon emission cost accounting of thermal power generation enterprises[J]. Low carbon world, 2019, 9(8): 142-143.
[5] 陈继明, 徐乾, 李勇, 等. 计及源荷不确定性和碳捕集虚拟电厂的电-气互联系统优化调度[J]. 太阳能学报, 2023, 44(10): 9-18.
CHEN J M, XU Q, LI Y, et al.Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta energiae solaris sinica, 2023, 44(10): 9-18.
[6] LUCQUIAUD M, CHALMERS H, GIBBINS J.Potential for flexible operation of pulverised coal power plants with CO2 capture[J]. Energy materials, 2007, 2(3): 175-180.
[7] LOU S H, LU S Y, WU Y W, et al.Optimizing spinning reserve requirement of power system with carbon capture plants[J]. IEEE transactions on power systems, 2015, 30(2): 1056-1063.
[8] 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2): 447-461.
CUI Y, ZENG P, WANG Z, et al.Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power system technology, 2021, 45(2): 447-461.
[9] METZ B, DAVIDSON O, CONINCK H D, et al.IPCC special report on carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press for the Intergovernmental Panel on Climate Change, 2005.
[10] CHEN Q X, KANG C Q, XIA Q.Modeling flexible operation mechanism of CO2 capture power plant and its effects on power-system operation[J]. IEEE transactions on energy conversion, 2010, 25(3): 853-861.
[11] COHEN S M, ROCHELLE G T, WEBBER M E.Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices[J]. Energy procedia, 2011, 4: 2604-2611.
[12] CHALMERS H, GIBBINS J.Potential for synergy between renewables and carbon capture and storage[C]//Proc. 29th IAEE Int. Conf. Berlin, Germany, 2006.
[13] 袁桂丽, 贾新潮, 房方, 等. 虚拟电厂源荷双侧热电联合随机优化调度[J]. 电网技术, 2020, 44(8): 2932-2940.
YUAN G L, JIA X C, FANG F, et al.Joint stochastic optimal scheduling of heat and power considering source and load sides of virtual power plant[J]. Power system technology, 2020, 44(8): 2932-2940.
[14] 刘兴宇, 温步瀛, 江岳文. 基于条件风险价值的含风电电力系统旋转备用效益研究[J]. 电工技术学报, 2017, 32(9): 169-178.
LIU X Y, WEN B Y, JIANG Y W.Study on the benefit from spinning reserve in wind power integrated power system based on conditional value at risk[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 169-178.
[15] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE transactions on power systems, 2008, 23(3): 983-991.
[16] YU H, CHUNG C Y, WONG K P, et al.Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J]. IEEE transactions on power systems, 2009, 24(2): 661-667.
[17] 仉梦林, 胡志坚, 王小飞, 等. 基于动态场景集和需求响应的二阶段随机规划调度模型[J]. 电力系统自动化, 2017, 41(11): 68-76.
ZHANG M L, HU Z J, WANG X F, et al.Two-stage stochastic programming scheduling model based on dynamic scenario sets and demand response[J]. Automation of electric power systems, 2017, 41(11): 68-76.
[18] ZHANG X P, ZHANG Y Z.Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant[J]. Journal of cleaner production, 2020, 276: 123348.
[19] 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦” 的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37(17): 4974-4985.
YUAN G L, WANG L B, WANG B Y.Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CSEE, 2017, 37(17): 4974-4985.
[20] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4441-4448.
YUAN G L, LIU H Q, YU J F, et al.Optimal scheduling of combined heat and power in virtual power plants with carbon capture thermal power units[J]. Proceedings of the CSEE, 2022, 42(12): 4441-4448.

基金

内蒙古自治区科技重大专项(2021ZD0026)

PDF(1342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/