基于合作博弈的共享混合储能电站规划

高芊芊, 山雨琦, 朱晓荣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 509-519.

PDF(1216 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1216 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 509-519. DOI: 10.19912/j.0254-0096.tynxb.2023-1182

基于合作博弈的共享混合储能电站规划

  • 高芊芊, 山雨琦, 朱晓荣
作者信息 +

PLANNING OF SHARED HYBRID ENERGY STORAGE POWER STATION BASED ON COOPERATIVE GAME

  • Gao Qianqian, Shan Yuqi, Zhu Xiaorong
Author information +
文章历史 +

摘要

针对新能源场站储能利用率低及单位建设成本高的问题,提出一种基于合作博弈的共享混合储能电站的规划方案。首先,制定蓄电池采用削峰填谷、超级电容器采用模型预测控制的充放电策略;其次,建立储能电站的双层规划模型,并构建储能配置结果的评价指标;最后,基于改进的Shapley分值法分配各新能源场站的收益,并分析储能投资成本对结果的影响。算例结果表明,在该交易模式下不仅可提高储能装置的利用率,而且可减少新能源场站对储能系统的投资成本。

Abstract

To address the issues of suboptimal energy storage utilization rates and elevated per-unit construction costs, the operational characteristics of various types of energy storage systems were examined in the present study. A planning framework was established for a shared hybrid energy storage power station, predicated on cooperative game theory. Firstly, charging and discharging strategies were formulated: accumulators useding load shifting and peak smoothing, while supercapacitors utilizing model predictive control. Subsequently, a two-level planning model for energy storage power stations was established, and an evaluation index for the results of energy storage configuration was constructed. Finally, the benefits of each new energy station were allocated based on the improved Shapley value method, and the impact of the cost of energy storage investment on the results was analyzed. The example results indicate that the proposed transaction model improves energy storage utilization rates and reduces investment costs for new energy stations in storage systems.

关键词

分布式发电 / 储能 / 模型预测控制 / 合作博弈 / 共享经济 / 削峰填谷 / 改进Shapley分值法

Key words

distributed power generation / energy storage / model predictive control (MPC) / cooperative game / shared economy / load shifting and peak smoothing / improved Shapley value method

引用本文

导出引用
高芊芊, 山雨琦, 朱晓荣. 基于合作博弈的共享混合储能电站规划[J]. 太阳能学报. 2024, 45(12): 509-519 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1182
Gao Qianqian, Shan Yuqi, Zhu Xiaorong. PLANNING OF SHARED HYBRID ENERGY STORAGE POWER STATION BASED ON COOPERATIVE GAME[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 509-519 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1182
中图分类号: TM6   

参考文献

[1] 中华人民共和国国家发展和改革委员会.关于鼓励可再生能源发电企业自建或购买调峰能力增加并网规模的通知[EB/OL].2021[2021-08-10]. http://www.ndrc.gov.cn/xwdt/tzgg/202108/t20210810_1293397.html.
National Development and Reform Commission, PRC. Notice on Encouraging renewable energy power generation Enterprises to build or Purchase Peak load Capacity to Increase Grid-connected scale[EB/OL].2021 [2021-08- 10]. http://www.ndrc.gov.cn/xwdt/tzgg/202108/t20210810_1293397.html.
[2] 山东省能源局 .2021 年全省能源工作指导意见[EB/ OL]. 2021[2021-02-07]. http://nyj.shandong.gov.cn/art/2021/2/19/art_100393_10286012.html.
Shandong Provincial Energy Administration. Guidance on Energy Work in 2021[EB/ OL]. 2021[2021-02-07]. http://nyj.shandong.gov.cn/art/2021/2/19/art_100393_10286012.html.
[3] 新疆维吾尔自治区发展和改革委员会.新疆电网发电侧储能管理暂行规则[EB/OL].2020[2020-06-28]. http://xjdrc.xinjiang.gov.cn/xjfgw/c108361/202006/aaa9a77fbe34d8d98c020fa9cd38ef2.shtml.
Development and Reform Commission of Xinjiang Uygur Autonomous Region. Interim Rules for Energy Storage Management of Power Generation Side of Xinjiang Power Grid[EB/OL].2020[2020-06-28]. http://xjdrc.xinjiang.gov.cn/xjfgw/c108361/202006/eaaa9a77fbe34d8d98c020fa9cd38ef2.shtml.
[4] 熊伟, 马志程, 张晓英, 等. 计及风、光消纳的风电-光伏-光热互补发电二层优化调度[J]. 太阳能学报, 2022, 43(7): 39-48.
XIONG W, MA Z C, ZHANG X Y, et al.Two-layer optimal dispatch of WF-PV-CSP hybrid power generation considering wind power and photovoltaic consumption[J]. Acta energiae solaris sinica, 2022, 43(7): 39-48.
[5] 康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态: 云储能[J]. 电力系统自动化, 2017, 41(21): 2-8, 16.
KANG C Q, LIU J K, ZHANG N.A new form of energy storage in future power system: cloud energy storage[J]. Automation of electric power systems, 2017, 41(21): 2-8, 16.
[6] ZHAO D W, WANG H, HUANG J W, et al.Virtual energy storage sharing and capacity allocation[C]//2020 IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC, Canada, 2020: 1.
[7] MEDIWATHTHE C P, SHAW M, HALGAMUGE S, et al.An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage[J]. IEEE transactions on sustainable energy, 2020, 11(1): 467-476.
[8] 张巍, 卢骧. 点对点交易下储能聚合商共享自营多模式交易模型[J]. 电力系统自动化, 2022, 46(2): 15-23.
ZHANG W, LU X.Sharing and self-operating multi-mode trading model of energy storage aggregators with peer-to-peer trade[J]. Automation of electric power systems, 2022, 46(2): 15-23.
[9] 鲁明芳, 李咸善, 李飞, 等. 基于双层博弈优化的光伏电站集群储能租赁配置策略[J]. 中国电机工程学报, 2022, 42(16): 5887-5898.
LU M F, LI X S, LI F, et al.Strategy of energy storage leasing configuration of photovoltaic power station cluster based on Bi-level game Optimization[J]. Proceedings of the CSEE, 2022, 42(16): 5887-5898.
[10] 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(4): 360-366.
SUN C, CHEN L J, QIU X J, et al.A generation-side shared energy storage planning model based on cooperative game[J]. Journal of global energy interconnection, 2019, 2(4): 360-366.
[11] WANG Y L, SONG F H, MA Y Z, et al.Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system[J]. Applied thermal engineering, 2020, 180: 115834.
[12] 李瑞民, 张新敬, 徐玉杰, 等. 风光互补系统中混合储能容量优化配置研究[J]. 储能科学与技术, 2019, 8(3): 512-522.
LI R M, ZHANG X J, XU Y J, et al.Research on optimal configuration of hybrid energy storage capacity for wind-solar generation system[J]. Energy storage science and technology, 2019, 8(3): 512-522.
[13] 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48.
ZHANG Q, LI X R, YANG M, et al.Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48.
[14] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3): 1016-1029.
MA L, XIE L R, YE L, et al.Wind power fluctuation suppression strategy based on hybrid energy storage bi-level programming model[J]. Power system technology, 2022, 46(3): 1016-1029.
[15] 张峰, 张熙, 张利, 等. 区域风电场群储能电站的优化配置及运行策略[J]. 电工技术学报, 2016, 31(14): 49-57.
ZHANG F, ZHANG X, ZHANG L, et al.Size optimization and operating strategies for battery energy storage station in adjacent wind farms[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 49-57.
[16] SCHALTZ E, KHALIGH A, RASMUSSEN P O.Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle[J]. IEEE transactions on vehicular technology, 2009, 58(8): 3882-3891.
[17] 高伟, 谢丽蓉, 卢浩鹏, 等. 考虑预测误差分析的混合储能补偿优化策略[J]. 太阳能学报, 2023, 44(2): 254-259.
GAO W, XIE L R, LU H P, et al.Optimization strategies for hybrid energy storage compensation considering prediction error analysis[J]. Acta energiae solaris sinica, 2023, 44(2): 254-259.
[18] 张宏宇, 印永华, 申洪, 等. 大规模风电接入后的系统调峰充裕性评估[J]. 中国电机工程学报, 2011, 31(22): 26-31.
ZHANG H Y, YIN Y H, SHEN H, et al.Peak-load regulating adequacy evaluation associated with large-scale wind power integration[J]. Proceedings of the CSEE, 2011, 31(22): 26-31.
[19] JU C Q, WANG P, GOEL L, et al.A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs[J]. IEEE transactions on smart grid, 2018, 9(6): 6047-6057.
[20] 李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39(6): 1672-1678.
LI H B, LU Z X, QIAO Y, et al.Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power system technology, 2015, 39(6): 1672-1678.
[21] 严干贵, 冯晓东, 李军徽, 等. 用于松弛调峰瓶颈的储能系统容量配置方法[J]. 中国电机工程学报, 2012, 32(28): 27-35, 22.
YAN G G, FENG X D, LI J H, et al.Optimization of energy storage system capacity for relaxing peak load regulation bottlenecks[J]. Proceedings of the CSEE, 2012, 32(28): 27-35, 22.
[22] 麻秀范, 余思雨, 朱思嘉等. 基于多因素改进Shapley的虚拟电厂利润分配[J]. 电工技术学报, 2020, 35(增刊2): 585-595.
MA X F, YU S Y, ZHU S J, et al.Profit allocation to virtual power plant members based on improved multifactor Shapley value method[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 585-595.
[23] EirGrid releases2020 wind and PV statistics[EB/OL]. EirGrid, 2020-11-07. http://www.eirgridgroup.com/customer-and-industry/general-customer-information/connected-and-contracted-generators/.
[24] 风电场功率预测预报管理暂行办法[J].太阳能,2011,(14):6-7.
Interim measures for the management of wind farm power forecasting and forecasting[J]. Solar energy, 2011, (14): 6-7.
[25] 荆博, 谭伦农, 钱政, 等. 光伏发电短期预测研究进展综述[J]. 电测与仪表, 2017, 54(12): 1-6.
JING B, TAN L N, QIAN Z, et al.An overview of research progress of short-term photovoltaic forecasts[J]. Electrical measurement & instrumentation, 2017, 54(12): 1-6.

PDF(1216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/