新能源参与的联合市场双层优化竞价模型研究

赵书强, 王傲儿, 宋金历, 李志伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 108-115.

PDF(1818 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1818 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 108-115. DOI: 10.19912/j.0254-0096.tynxb.2023-1186

新能源参与的联合市场双层优化竞价模型研究

  • 赵书强, 王傲儿, 宋金历, 李志伟
作者信息 +

STUDY ON BI-LEVEL OPTIMAL BIDDING MODEL OF JOINT MARKET WITH PARTICIPATION OF NEW ENERGY

  • Zhao Shuqiang, Wang Aoer, Song Jinli, Li Zhiwei
Author information +
文章历史 +

摘要

为有效协调联合市场运营方的经济成本与机组方的调频市场收益,提出一种联合市场环境下多源参与的双层优化竞价模型。市场运营方通过上层模型制定发电计划,并确定各机组在调频市场中的调频容量中标值,其优化目标为减少联合市场综合运营成本;基于上层模型运行结果,机组方通过下层模型调整其调频市场报价策略,其优化目标为提高被优化机组方的调频市场收益,在经济性优化的基础上保证系统的调频性能。通过算例验证可知,当下层模型主体为火电机组时,双层优化模型使得火电机组方的一次调频收益在联合市场综合成本趋于稳定的基础上有所提高;当下层模型主体为新能源机组时,双层优化竞价模型使得新能源机组方的一次调频收益较优化前有所提高,联合市场综合成本有所下降,利用经济性优化提高新能源机组调频参与积极性的同时,系统获得了更优的调频性能,结果显示此情况下的系统综合调频性能量化均值较优化前有所提高。

Abstract

In order to coordinate the economic cost of the joint market operator and the frequency modulation auxiliary service market benefit of the unit, a bi-level optimal bidding model with multi-source participation in the joint market is proposed. The market operator makes power generation plan through the upper level model, and determines the target value of the frequency modulation capacity of each unit in the frequency control auxiliary service (FCAS) market. Its optimization objective is to reduce the comprehensive operating cost in the joint market. Based on the operation results of the upper model, the unit adjusts its FCAS market quotation strategy through the lower model. Its optimization objective is to improve the frequency modulation market income of the optimized unit and ensure the frequency modulation performance of the system on the basis of economic optimization. The results show that when the main optimal body of the lower model is the summation of thermal power units, the bi-level optimization model makes the primary frequency modulation revenue of the thermal power units improve on the basis of the comprehensive cost of the combined market tends to be stable. When the main optimal body of the lower model is the summation of new energy units, the bi-level optimal bidding model improves the primary frequency modulation income of the new energy unit, and reduces the joint market cost. While improving the participation enthusiasm of the new energy units in frequency modulation through economic optimization, the system obtains better frequency modulation performance. The results show that the quantized mean of the integrated frequency modulation performance of the system is improved compared with that before optimization.

关键词

风力机 / 储能 / 调频 / 光伏电站 / 联合出清 / 双层优化模型

Key words

wind turbines / energy storage / frequency modulation / photovoltaic power station / joint clearing / bi-level optimization model

引用本文

导出引用
赵书强, 王傲儿, 宋金历, 李志伟. 新能源参与的联合市场双层优化竞价模型研究[J]. 太阳能学报. 2024, 45(11): 108-115 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1186
Zhao Shuqiang, Wang Aoer, Song Jinli, Li Zhiwei. STUDY ON BI-LEVEL OPTIMAL BIDDING MODEL OF JOINT MARKET WITH PARTICIPATION OF NEW ENERGY[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 108-115 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1186
中图分类号: F407.61   

参考文献

[1] 张显, 史连军. 中国电力市场未来研究方向及关键技术[J]. 电力系统自动化, 2020, 44(16): 1-11.
ZHANG X, SHI L J.Future research areas and key technologies of electricity market in China[J]. Automation of electric power systems, 2020, 44(16): 1-11.
[2] 王正位, 张跃星. “双碳”目标背景下绿色金融与电力市场协同发展研究[J]. 新金融, 2023(2): 31-37.
WANG Z W, ZHANG Y X.Research on the coordinated development of green finance and electricity market under the background of China’s “dual carbon”target[J]. New finance, 2023(2): 31-37.
[3] 李竹, 宋莉, 于松泰, 等. 促进可再生能源市场化的省内中长期运行策略研究[J]. 太阳能学报, 2023, 44(2): 317-325.
LI Z, SONG L, YU S T, et al.Research on medium and long-term operation strategy of promoting marketization of renewable energy in Province[J]. Acta energiae solaris sinica, 2023, 44(2): 317-325.
[4] ILIEVA I, BOLKESJØT F. An econometric analysis of the regulation power market at the Nordic power exchange[J]. Energy procedia, 2014, 58: 58-64.
[5] MEEUS L, PURCHALA K, BELMANS R.Development of the internal electricity market in Europe[J]. The electricity journal, 2005, 18(6): 25-35.
[6] CSEREKLYEI Z, QU S Z, ANCEV T.The effect of wind and solar power generation on wholesale electricity prices in Australia[J]. Energy policy, 2019, 131: 358-369.
[7] 王悦, 李源, 刘丽娟, 等. 日本和新加坡电力零售市场对我国电力市场建设的启示[J]. 电力工程技术, 2021, 40(3): 193-199.
WANG Y, LI Y, LIU L J, et al.The enlightenment of Japan and Singapore electricity retail market for the construction of electricity market in China[J]. Electric power engineering technology, 2021, 40(3): 193-199.
[8] 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1694.
WANG M J, GUO J B, MA S C, et al.Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1694.
[9] 孙莹, 李晓鹏, 蔡文斌, 等. 面向新能源消纳的调峰辅助服务市场研究综述[J]. 现代电力, 2022, 39(6): 668-676.
SUN Y, LI X P, CAI W B, et al.A research overview on ancillary services market of peak regulation oriented to accommodation of new energy[J]. Modern electric power, 2022, 39(6): 668-676.
[10] 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746-7764.
WU Z Y, ZHOU M, WANG J X, et al.Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(21): 7746-7764.
[11] 石可, 陈皓勇, 李鹏, 等. 基于协同进化的两种电力市场出清机制分析[J]. 电力系统自动化, 2019, 43(9): 68-74.
SHI K, CHEN H Y, LI P, et al.Analysis on two kinds of electricity market clearance mechanism based on co-evolution[J]. Automation of electric power systems, 2019, 43(9): 68-74.
[12] 施展武, 杨莉, 甘德强. PAB和MCP电价机制下考虑不同容量水平的市场均衡分析[J]. 电力系统自动化, 2005, 29(19): 10-13.
SHI Z W, YANG L, GAN D Q.A price competition model in MCP and PAB pricing considering different capacity constraints[J]. Automation of electric power systems, 2005, 29(19): 10-13.
[13] 邓雯丽. 电力市场环境下配电网中多利益主体的博弈运行研究[D]. 广州: 华南理工大学, 2022.
DENG W L.Research on game operation of multi-stakeholder in the distribution network in the electricity market[D].Guangzhou: South China University of Technology, 2022.
[14] 张兴平, 何澍, 王泽嘉, 等. 不同新能源渗透率下燃煤机组行为策略分析[J]. 电力建设, 2022, 43(5): 9-17.
ZHANG X P, HE S, WANG Z J, et al.Behavior strategy of coal-fired units under different new energy penetration rate[J]. Electric power construction, 2022, 43(5): 9-17.
[15] RAINERI R, RÍOS S, SCHIELE D. Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison[J]. Energy policy, 2006, 34(13): 1540-1555.
[16] CLÒS, CATALDI A, ZOPPOLI P. The merit-order effect in the Italian power market: the impact of solar and wind generation on national wholesale electricity prices[J]. Energy policy, 2015, 77: 79-88.
[17] LIU S Q, YANG Q, CAI H X, et al.Market reform of Yunnan electricity in southwestern China: practice, challenges and implications[J]. Renewable and sustainable energy reviews, 2019, 113: 109265.
[18] 崔勇, 周晓倩, 刘文, 等. 基于系统辅助服务收益动态优化的多能联盟体市场策略[J]. 太阳能学报, 2021, 42(2): 370-375.
CUI Y, ZHOU X Q, LIU W, et al.Market strategy of multi energy union based on dynamic optimization of system auxiliary service revenue[J]. Acta energiae solaris sinica, 2021, 42(2): 370-375.
[19] 王海宁. 基于复杂系统多Agent建模的电力市场仿真技术研究[D]. 北京: 中国电力科学研究院, 2013.
WANG H N.Study on power market simulation and its application system base-on the multi-agent modeling of complex adaptive system[D]. Beijing: China Electric Power Research Institute, 2013.
[20] 李平均, 刘康平, 王萌, 等. 基于多智能体的电力现货市场模拟系统设计[J]. 自动化技术与应用, 2020, 39(6): 155-158.
LI P J, LIU K P, WANG M, et al.Design of electricity spot market simulation system based on multi-agent[J]. Techniques of automation and applications, 2020, 39(6): 155-158.
[21] 谢敬东, 陆文奇, 吕志伟. 电力市场环境下的微电网双层经济运营优化模型[J]. 现代电力, 2020, 37(4): 433-440.
XIE J D, LU W Q, LYU Z W.Optimization model of bi-level economic operation of microgrid in electricity market environment[J]. Modern electric power, 2020, 37(4): 433-440.
[22] 刘培良. 抽水蓄能电站与新能源电力市场联合竞价策略研究[D]. 北京: 华北电力大学, 2021.
LIU P L.Cooperative bidding strategy of pumped storage power station and new energy in power market[D].Beijing: North China Electric Power University, 2021.
[23] 任景, 周鑫, 薛晨, 等. 发用两侧参与调峰的现货市场联合出清模式设计[J]. 电力工程技术, 2022, 41(1): 26-33.
REN J, ZHOU X, XUE C, et al.Spot market joint clearing mode with both sides of generation and customer participating in peak regulation[J]. Electric power engineering technology, 2022, 41(1): 26-33.
[24] 张敏, 王建学, 王秀丽, 等. 面向新能源消纳的调峰辅助服务市场双边交易机制与模型[J]. 电力自动化设备, 2021, 41(1): 84-91.
ZHANG M, WANG J X, WANG X L, et al.Bilateral trading mechanism and model of peak regulation auxiliary service market for renewable energy accommodation[J]. Electric power automation equipment, 2021, 41(1): 84-91.

基金

国家自然科学基金(52307098);中央高校基本科研业务费专项资金(2023MS099)

PDF(1818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/