乙酸钾修饰界面用于高效稳定的钙钛矿太阳电池

户立文, 胡隆生, 杨亿凡, 李国龙

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 51-58.

PDF(2640 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2640 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 51-58. DOI: 10.19912/j.0254-0096.tynxb.2023-1210

乙酸钾修饰界面用于高效稳定的钙钛矿太阳电池

  • 户立文1, 胡隆生2, 杨亿凡3, 李国龙1
作者信息 +

POTASSIUM ACETATE MODIFIED INTERFACE FOR EFFICIENT AND STABLE PEROVSKITE SOLAR CELLS

  • Hu Liwen1, Hu Longsheng2, Yang Yifan3, Li Guolong1
Author information +
文章历史 +

摘要

使用乙酸钾(KAc)修饰电子传输层,正置结构的SnO2/perovskite界面使用其具有的羧基和碱金属阳离子调节能级。研究发现,KAc薄膜的引入会对钙钛矿薄膜产生一定的表面陷阱钝化作用,表现出非辐射复合的减少以及体内和界面电荷复合的抑制。此外,调节钙钛矿晶体的生长,产生晶粒尺寸从450 nm增至600 nm且无针孔的钙钛矿薄膜,缺陷密度显著降低。结果表明,通过使用KAc来修饰电子传输层,可明显减少SnO2电子传输层的缺陷及能级差;优化后的太阳电池效率提高7.63%,量子效率(IPCE)从87.3%增大到90.1%。

Abstract

In the paper, potassium acetate(KAc) is used to modify the SnO2 electron transport layer, thus regulating the energy level alignment of the SnO2/perovskite interface. In addition, the introduction of KAc film passivates perovskite film to attenuate the probability of non-radiative recombination and inhibits the bulk and interface charge recombination. Meanwhile, the introduction of KAc film improves the growth process of perovskite crystals. Perovskite films with grain size increase from 450 nm to about 600 nm and without pinholes are produced. Therefore, inserting KAc as the modification layer significantly reduces the defect of the SnO2 electron transport layer and optimizes energy level difference as well. As a result, the efficiency of the optimized solar cell is increased by 7.63% compared with that of the referred device, and the IPCE is increased from 87.3% to 90.1%.

关键词

钙钛矿太阳电池 / 结晶度 / 缺陷密度 / 乙酸钾

Key words

perovskite solar cells / crystallinity / defect density / potassium acetate

引用本文

导出引用
户立文, 胡隆生, 杨亿凡, 李国龙. 乙酸钾修饰界面用于高效稳定的钙钛矿太阳电池[J]. 太阳能学报. 2024, 45(4): 51-58 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1210
Hu Liwen, Hu Longsheng, Yang Yifan, Li Guolong. POTASSIUM ACETATE MODIFIED INTERFACE FOR EFFICIENT AND STABLE PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 51-58 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1210
中图分类号: TM914.4   

参考文献

[1] 江雨童, 陈东, 孙泽华, 等. ITO/Metal/ITO叠层电极中Cu/Ag对钙钛矿太阳电池电极性能的影响[J]. 太阳能学报, 2022, 43(9): 83-87.
JIANG Y T, CHEN D, SUN Z H, et al.Effect of Cu/Ag in ITO/Metal/ITO laminated electrode on performance of perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 83-87.
[2] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82.
ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82.
[3] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[4] 王晓春, 孙钦军, 高利岩, 等. 电纺AZO NWs电子传输层提高钙钛矿太阳电池性能的研究[J]. 太阳能学报, 2022, 43(1): 369-374.
WANG X C, SUN Q J, GAO L Y, et al.Study on performance enhancement of perovskite solar cells via electrospun AZO NWs as electronic transport layer[J]. Acta energiae solaris sinica, 2022, 43(1): 369-374.
[5] 张海川, 王康旭, 黄跃龙, 等. 氧化钼在半透明双面钙钛矿太阳电池中的应用[J]. 太阳能学报, 2021, 42(9): 120-124.
ZHANG H C, WANG K X, HUANG Y L, et al.Application of molybdenum oxide in semi-transparent bifacial perovskite solar cells[J]. Acta energiae solaris sinica, 2021, 42(9): 120-124.
[6] LIANG Z, ZHANG Y, XU H F, et al.Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624: 557-563.
[7] HAO F, STOUMPOS C C, GUO P J, et al.Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(35): 11445-11452.
[8] HAN J, KWON H, KIM E, et al.Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells[J]. Journal of materials chemistry A, 2020, 8(4): 2105-2113.
[9] WANG K, SHI Y T, DONG Q S, et al.Low-temperature and solution-processed amorphous WOx as electron-selective layer for perovskite solar cells[J]. The journal of physical chemistry letters, 2015, 6(5): 755-759.
[10] ROMBACH F M, HAQUE S A, MACDONALD T J.Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells[J]. Energy & environmental science, 2021, 14(10): 5161-5190.
[11] DU G Z, YANG L, ZHANG C P, et al.Evaporated undoped spiro-OMeTAD enables stable perovskite solar cells exceeding 20% efficiency[J]. Advanced energy materials, 2022, 12(22): 2103966.
[12] ZHU P C, GU S, LUO X, et al.Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J]. Advanced energy materials, 2020, 10(3): 1903083.
[13] WU W, HAN W B, DENG Y Y, et al.Low-cost and easily prepared interface layer towards efficient and negligible hysteresis perovskite solar cells[J]. Journal of colloid and interface science, 2022, 617: 745-751.
[14] KIM G W, CHOI Y, CHOI H, et al.Novel cathode interfacial layer using creatine for enhancing the photovoltaic properties of perovskite solar cells[J]. Journal of materials chemistry A, 2020, 8(41): 21721-21728.
[15] ZHAO H, HAN Y, XU Z, et al.A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V[J]. Advanced energy materials, 2019, 9(40): 1902279.
[16] YAO X H, TANG X Y, WU M W, et al.Interfacial and doping synergistic effect of versatile potassium acetate toward efficient CsPbI2Br perovskite solar cells[J]. ACS applied energy materials, 2023, 6(11): 5997-6005.
[17] XU P Y, HE H Y, DING J J, et al.Simultaneous passivation of the SnO2/perovskite interface and perovskite absorber layer in perovskite solar cells using KF surface treatment[J]. ACS applied energy materials, 2021, 4(10): 10921-10930.
[18] LEE S H, KWON K, KIM K, et al.Electrical, structural, optical, and adhesive characteristics of aluminum-doped tin oxide thin films for transparent flexible thin-film transistor applications[J]. Materials, 2019, 12(1): 137.
[19] LEE C M, LEE W Y, LEE H, et al.Sol-gel processed yttrium-doped SnO2 thin film transistors[J]. Electronics, 2020, 9(2): 254.
[20] JANG B, KIM T, LEE S, et al.High performance ultrathin SnO2 thin-film transistors by sol-gel method[J]. IEEE electron device letters, 2018, 39(8): 1179-1182.
[21] XIE J S, HUANG K, YU X G, et al.Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J]. ACS nano, 2017, 11(9): 9176-9182.
[22] WANG D, WU C C, LUO W, et al.ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells[J]. ACS applied energy materials, 2018, 1(5): 2215-2221.
[23] ZHANG J K, SUN Y P, YU H Z.Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells[J]. Chemical engineering journal, 2022, 431: 133948.
[24] CHEN J Z, ZHAO X, KIM S G, et al.Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells[J]. Advanced materials, 2019, 31(39): e1902902.
[25] WANG P Y, CHEN B B, LI R J, et al.Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V[J]. ACS energy letters, 2021, 6(6): 2121-2128.
[26] CHUEH C C, LI C Z, JEN A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy & environmental science, 2015, 8(4): 1160-1189.
[27] LI H Y, ZHANG C, GONG C, et al.2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells[J]. Nature energy, 2023, 8: 946-955.
[28] XIONG Z H, LAN L K, WANG Y Y, et al.Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%[J]. ACS energy letters, 2021, 6(11): 3824-3830.
[29] LEE J W, KIM H S, PARK N G.Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Accounts of chemical research, 2016, 49(2): 311-319.
[30] AYDIN E, DE BASTIANI M, DE WOLF S.Defect and contact passivation for perovskite solar cells[J]. Advanced materials, 2019, 31(25): e1900428.

基金

基于石墨烯Fabry-Perrot腔结构的太赫兹光电探测器研发(2020BDE03013)

PDF(2640 KB)

Accesses

Citation

Detail

段落导航
相关文章

/