提出一种基于改进灰狼算法的塔式太阳能热发电电站定日镜场优化布局方法,该改进算法将灰狼优化算法与记忆、局部搜索和进化算子相结合,增强了算法的全局性和搜索精度。以西班牙Gemasolar塔式太阳能热发电电站为例验证算法的有效性,使用改进灰狼算法对该电站定日镜场布局优化后,定日镜场光学效率提升5%,证明定日镜场布局经过改进灰狼算法优化后有更高的年平均光学效率。
Abstract
A method for optimizing the layout of the heliostat field in tower solar thermal power plants based on the improved gray wolf optimization algorithm is proposed. This improved algorithm combines the gray wolf optimization algorithm with memory, local search and evolutionary operators to enhance the global nature and search accuracy of the algorithm. Taking the Gemasolar solar thermal power plant in Spain as an example to verify the effectiveness of the algorithm, after using the improved gray wolf optimization algorithm to optimize the layout of the heliostat field in the power station, the optical efficiency of the heliostat field increased by 5%, which proves that the heliostat field layout has a higher average annual optical efficiency after being optimized by the improved gray wolf algorithm.
关键词
定日镜 /
聚光太阳能热发电 /
优化 /
改进灰狼算法 /
镜场布局 /
光学效率
Key words
heliostats /
concentrated solar power /
optimization /
improved grey wolf algorithm /
heliostat field layout /
optical efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] AL-SAKAF O H. Application possibilities of solar thermal power plants in Arab countries[J]. Renewable energy, 1998, 14(1): 1-9.
[2] DENG L B, WU Y R, GUO S, et al.Rose pattern for heliostat field optimization with a dynamic speciation-based mutation differential evolution[J]. International journal of energy research, 2020, 44(3): 1951-1970.
[3] LI C, ZHAI R R, LIU H T, et al.Optimization of a heliostat field layout using hybrid PSO-GA algorithm[J]. Applied thermal engineering, 2018, 128: 33-41.
[4] RIZVI A A, YANG D, KHAN T A.Optimization of biomimetic heliostat field using heuristic optimization algorithms[J]. Knowledge-based systems, 2022, 258: 1-14.
[5] ATIF M, AL-SULAIMAN F A. Development of a mathematical model for optimizing a heliostat field layout using differential evolution method[J]. International journal of energy research, 2015, 39(9): 1241-1255.
[6] ATIF M, AL-SULAIMAN F A. Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm[J]. Energy conversion and management, 2015, 95: 1-9.
[7] XIE Q Y, GUO Z Q, LIU D F, et al.Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm[J]. Renewable energy, 2021, 176: 447-458.
[8] BELAID A, FILALI A, HASSANI S, et al.Heliostat field optimization and comparisons between biomimetic spiral and radial-staggered layouts for different heliostat shapes[J]. Solar energy, 2022, 238: 162-177.
[9] 高博, 刘建兴, 孙浩, 等. 基于自适应引力搜索算法的定日镜场优化布置[J]. 太阳能学报, 2022, 43(10): 119-125.
GAO B, LIU J X, SUN H, et al.Optimization of a heliostat field layout using adaptive gravity search algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 119-125.
[10] COLLADO F J, GUALLAR J.Campo: generation of regular heliostat fields[J]. Renewable energy, 2012, 46: 49-59.
[11] 张茂龙, 卫慧敏, 杜小泽, 等. 塔式太阳能镜场阴影与遮挡效率的改进算法[J]. 太阳能学报, 2016, 37(8): 1998-2003.
ZHANG M L, WEI H M, DU X Z, et al.Modified algorithm of shadow and blocking efficiency for heliostat field of solar power tower[J]. Acta energiae solaris sinica, 2016, 37(8): 1998-2003.
[12] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. Hoboken: Wiley, 2013.
[13] SCHMITZ M, SCHWARZBÖZL P, BUCK R, et al. Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators[J]. Solar energy, 2006, 80(1): 111-120.
[14] SCHWARZBÖZL P, PITZ-PAAL R, SCHMITZ M. Visual HFLCAL-a software tool for layout and optimisation of heliostat fields[C]//Solar PACES, Berlin, Germany, 2009.
[15] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[16] EL-FERGANY A A, HASANIEN H M. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms[J]. Electric power components and systems, 2015, 43(13): 1548-1559.
[17] MIRJALILI S.How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied intelligence, 2015, 43(1): 150-161.
[18] TU Q, CHEN X C, LIU X C.Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection[J]. IEEE access, 2019, 7: 78012-78028.
[19] COLLADO F J, GUALLAR J.A review of optimized design layouts for solar power tower plants with campo code[J]. Renewable and sustainable energy reviews, 2013, 20: 142-154.
[20] COLLADO F J.Quick evaluation of the annual heliostat field efficiency[J]. Solar energy, 2008, 82(4): 379-384.
基金
国家自然科学基金(62373067);湖南省自然科学基金(2021JJ30740)