风电叶片用聚氨酯/玻璃纤维混合物热解特性研究

陆燕宁, 金亚伟, 李羲, 陈波, 管诗骈, 岳峻峰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 486-495.

PDF(2576 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2576 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 486-495. DOI: 10.19912/j.0254-0096.tynxb.2023-1216

风电叶片用聚氨酯/玻璃纤维混合物热解特性研究

  • 陆燕宁1, 金亚伟1, 李羲2, 陈波1, 管诗骈1, 岳峻峰1
作者信息 +

STUDY ON PYROLYSIS CHARACTERISTICS OF POLYURETHANE/GLASS FIBERS FOR WIND TURBINE BLADES

  • Lu Yanning1, Jin Yawei1, Li Xi2, Chen Bo1, Guan Shipian1, Yue Junfeng1
Author information +
文章历史 +

摘要

利用热重分析(TG)和管式炉实验对风电叶片基础组分混合物(聚氨酯和玻璃纤维)的热解特性和产物分布进行研究。TG实验表明聚氨酯/玻璃纤维混合物表现出与纯聚氨酯不同的热解行为,且玻璃纤维将延后聚氨酯脱羧反应发生的温度。动力学计算结果表明,聚氨酯含量将对混合物的热解活化能产生更大影响,玻璃纤维则使得纯聚氨酯热解的第二步转变为两个阶段反应,管式炉实验证明聚氨酯与玻璃纤维质量混合比为3∶6时产生的气体有较高的热值。

Abstract

Thermogravimetric analysis (TG) and tube furnace experiments were used in this study to examine the pyrolysis properties and product distribution of the fundamental component mixture (polyurethane and glass fiber) of wind turbine blades. High heating rates could promote thermal decomposition of the samples and prolong the reaction process of the samples with low polyurethane content, but they had no effect on the decarboxylation reaction of the samples. While a suitable mixing ratio contribute to the pyrolysis of the mixture, glass fiber delayed the temperature at which the polyurethane decarboxylation reaction took place. Glass fiber changed the second phase of pure polyurethane pyrolysis into a two-stage process, which had weaker effect on the thermal activation energy than the amount of polyurethane present. The presence of glass fibers would lead to an increase in the activation energy of the thermal decomposition of the mixture with the increase of heating rate. Additionally, the gas produced from the mixture with a polyurethane to glass fiber ratio of 3∶6 had a higher calorific value.

关键词

风电叶片 / 聚氨酯 / 动力学参数 / 挥发性有机物 / 热解

Key words

wind turbine blades / polyurethane / kinetic parameter / volatile organic compounds / pyrolysis

引用本文

导出引用
陆燕宁, 金亚伟, 李羲, 陈波, 管诗骈, 岳峻峰. 风电叶片用聚氨酯/玻璃纤维混合物热解特性研究[J]. 太阳能学报. 2024, 45(11): 486-495 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1216
Lu Yanning, Jin Yawei, Li Xi, Chen Bo, Guan Shipian, Yue Junfeng. STUDY ON PYROLYSIS CHARACTERISTICS OF POLYURETHANE/GLASS FIBERS FOR WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 486-495 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1216
中图分类号: TK83   

参考文献

[1] GE L C, JIANG H, FENG H C, et al.Study on the thermal transformation of basic components of wind turbine blade[J]. Asia-pacific journal of chemical engineering, 2023, 18(5): e2938.
[2] COOPERMAN A, EBERLE A, LANTZ E.Wind turbine blade material in the United States: quantities, costs, and end-of-life options[J]. Resources, conservation and recycling, 2021, 168: 105439.
[3] 许淳瑶, 葛立超, 冯红翠, 等. 风力发电现状及叶片组成与回收利用综述[J]. 热力发电, 2022, 51(9): 29-41.
XU C Y, GE L C, FENG H C, et al.Review on status of wind power generation and composition and recycling of wind turbine blades[J]. Thermal power generation, 2022, 51(9): 29-41.
[4] LIU P, BARLOW C Y.Wind turbine blade waste in 2050[J]. Waste management, 2017, 62: 229-240.
[5] COUSINS D S, SUZUKI Y, MURRAY R E, et al.Recycling glass fiber thermoplastic composites from wind turbine blades[J]. Journal of cleaner production, 2019, 209: 1252-1263.
[6] 陈吉朋, 王计安, 张雨秋, 等. 废弃风电叶片材料回收与再制造技术的研究进展[J]. 太阳能学报, 2023, 44(5): 328-335.
CHEN J P, WANG J A, ZHANG Y Q, et al.Progress on recycling methods and remanufacturing technology of waste wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(5): 328-335.
[7] MAMANPUSH S H, LI H, ENGLUND K, et al.Recycled wind turbine blades as a feedstock for second generation composites[J]. Waste management, 2018, 76: 708-714.
[8] ERARTSIN O, ZANJANI J S M, BARAN I. Unravelling the interphase-bond strength relationship in novel co-bonded thermoplastic-thermoset hybrid composites for leading edge protection of wind turbine blades[J]. Polymer testing, 2023, 117: 107856.
[9] GE L C, XU C Y, FENG H C, et al.Study on isothermal pyrolysis and product characteristics of basic components of waste wind turbine blades[J]. Journal of analytical and applied pyrolysis, 2023, 171: 105964.
[10] KHALID M Y, ARIF Z U, HOSSAIN M, et al.Recycling of wind turbine blades through modern recycling technologies: a road to zero waste[J]. Renewable energy focus, 2023, 44: 373-389.
[11] YANG W, KIM K H, LEE J.Upcycling of decommissioned wind turbine blades through pyrolysis[J]. Journal of cleaner production, 2022, 376: 134292.
[12] NAHIL M A, WILLIAMS P T.Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J]. Journal of analytical and applied pyrolysis, 2011, 91(1): 67-75.
[13] 李良钰, 熊小鹤, 冯敬武, 等. 不同气氛下废弃风机叶片热转化产物研究[J]. 热力发电, 2023, 52(3): 94-101.
LI L Y, XIONG X H, FENG J W, et al.Thermal conversion products of waste fan blades in different atmospheres[J]. Thermal power generation, 2023, 52(3): 94-101.
[14] PICKERING S J.Recycling technologies for thermoset composite materials: current status[J]. Composites part A: applied science and manufacturing, 2006, 37(8): 1206-1215.
[15] MENG F R, OLIVETTI E A, ZHAO Y Y, et al.Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS sustainable chemistry & engineering, 2018, 6(8): 9854-9865.
[16] DENG J Y, XU L, ZHANG L B, et al.Recycling of carbon fibers from CFRP waste by microwave thermolysis[J]. Processes, 2019, 7(4): 207.
[17] HU J, DANISH M, LOU Z Y, et al.Effectiveness of wind turbine blades waste combined with the sewage sludge for enriched carbon preparation through the co-pyrolysis processes[J]. Journal of cleaner production, 2018, 174: 780-787.
[18] GE L C, LI X, FENG H C, et al.Analysis of the pyrolysis process, kinetics and products of the base components of waste wind turbine blades(epoxy resin and carbon fiber)[J]. Journal of analytical and applied pyrolysis, 2023, 170: 105919.
[19] NAQVI S R, PRABHAKARA H M, BRAMER E A, et al.A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy[J]. Resources, conservation and recycling, 2018, 136: 118-129.
[20] IRMAK ASLAN D, PARTHASARATHY P, GOLDFARB J L, et al.Pyrolysis reaction models of waste tires: application of Master-Plots method for energy conversion via devolatilization[J]. Waste management, 2017, 68: 405-411.
[21] TANG X J, CHEN Z H, LIU J Y, et al.Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires[J]. Journal of hazardous materials, 2021, 402: 123516.
[22] JIANG L, ZHANG D, LI M, et al.Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS[J]. Fuel, 2018, 222: 11-20.
[23] TORRES-HERRADOR F, ESCHENBACHER A, BLONDEAU J, et al.Study of the degradation of epoxy resins used in spacecraft components by thermogravimetry and fast pyrolysis[J]. Journal of analytical and applied pyrolysis, 2022, 161: 105397.
[24] STANČIN H, ŠAFÁŘ M, RŮŽIČKOVÁ J, et al. Influence of plastic content on synergistic effect and bio-oil quality from the co-pyrolysis of waste rigid polyurethane foam and sawdust mixture[J]. Renewable energy, 2022, 196: 1218-1228.
[25] JOMAA G, GOBLET P, COQUELET C, et al.Kinetic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric analysis[J]. Thermochimica acta, 2015, 612: 10-18.
[26] ZHANG H Y, ZHU Y W, LIU Q Y, et al.Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage[J]. Applied energy, 2022, 306: 118131.
[27] YUN Y M, SEO M W, KOO G H, et al.Pyrolysis characteristics of GFRP(glass fiber reinforced plastic) under non-isothermal conditions[J]. Fuel, 2014, 137: 321-327.
[28] BRICENO J, LEMOS M A, LEMOS F.Kinetic analysis of the degradation of HDPE+PP polymer mixtures[J]. International journal of chemical kinetics, 2021, 53(5): 660-674.
[29] BURRA K G, GUPTA A K.Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes[J]. Applied energy, 2018, 220: 408-418.
[30] KUMAGAI S, MOTOKUCHO S, YABUKI R, et al.Effects of hard-and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers[J]. Journal of analytical and applied pyrolysis, 2017, 126: 337-345.
[31] ZIA K M, BHATTI H N, AHMAD BHATTI I.Methods for polyurethane and polyurethane composites, recycling and recovery: a review[J]. Reactive and functional polymers, 2007, 67(8): 675-692.
[32] ZELLER M, GARBEV K, WEIGEL L, et al.Thermogravimetric studies, kinetic modeling and product analysis of the pyrolysis of model polymers for technical polyurethane applications[J]. Journal of analytical and applied pyrolysis, 2023, 171: 105976.
[33] XU M X, JI H W, WU Y C, et al.The pyrolysis of end-of-life wind turbine blades under different atmospheres and their effects on the recovered glass fibers[J]. Composites part B: engineering, 2023, 251: 110493.

PDF(2576 KB)

Accesses

Citation

Detail

段落导航
相关文章

/