提出在水平埋管和地表中间敷设热绝缘层,用于降低地源热泵系统处理防护工程余热过程中的红外暴露风险。首先,综合考虑太阳辐射、长波辐射、对流传热、蒸发潜热以及埋管散热对地表温度的影响,构建水平螺旋埋管绝缘层模型;然后,求得典型工况下有无绝缘层的地表温度分布,分析敷设绝缘层带来的红外伪装效果;最后,探究敷设热绝缘层对系统热性能的附带影响。结果表明:通过敷设热绝缘层,埋管上方地表和周边区域的最大温差可由5 ℃减少至0.3 ℃以内,上方地表温度同周边区域平均温度的标准偏差最大可减少0.71 ℃,系统红外暴露风险大大降低;敷设绝缘层后热泵和系统的平均COP可分别增加0.15和0.09,系统传热性能得到提升;当埋管上方地表热流、埋管出口温度、埋管上方地表同周边区域地表热流或温差为极值时,需着重对系统进行红外伪装处理。
Abstract
A thermal insulation layer between the horizontal ground heat exchanger and ground surface was proposed to reduce the infrared exposure risk of the ground source heat pump system in handling the waste heat of protective engineering. The insulation layer model of spiral-type horizontal ground heat exchanger was developed to compare the surface temperature distribution with or without insulation layer under typical working conditions, analyze the infrared camouflage effect resulted from the insulation layer, and evaluate the incidental influence of the thermal insulation layer on the thermal performance of the system. The results show that by laying the thermal insulation layer, the maximum temperature difference between the surface above the buried pipe and the surrounding area can be reduced from 5 ℃ to less than 0.3 ℃, and the infrared exposure risk of the system is greatly reduced. By installing the insulation layer, the average COP of the heat pump and the system can increase by 0.15 and 0.09 respectively, and the system thermal performance can be improved. When the surface heat flow above the buried pipe, the outlet temperature of the buried pipe, and the surface heat flow or temperature difference between the surface above the buried pipe and the surrounding area are extreme values, the infrared camouflage processing of the system should be emphasized.
关键词
地源热泵 /
数值模型 /
热效能 /
红外暴露 /
应对策略
Key words
ground source /
numerical models /
thermal efficiency /
infrared exposure /
countermeasures
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓臻鹏, 年永乐, 程文龙. 基于三维DTRT传热模型的地源热泵土壤热导率测试方法研究[J]. 太阳能学报, 2023, 44(4): 259-265.
DENG Z P, NIAN Y L, CHENG W L.Test method research of soil thermal conductivity of ground source heat pump based on three-dimensional distributed thermal response test heat transfer model[J]. Acta energiae solaris sinica, 2023, 44(4): 259-265.
[2] 于明志, 贺泽群, 毛煜东, 等. 地埋管换热器分区运行对地源热泵系统运行经济性影响的模拟研究[J]. 太阳能学报, 2022, 43(1): 205-212.
YU M Z, HE Z Q, MAO Y D, et al.Influence of ground heat exchanger zoning operation on operation economy of ground source heat pump systems[J]. Acta energiae solaris sinica, 2022, 43(1): 205-212.
[3] 邹行, 裴鹏, 郝定溢, 等. 土壤水力学特征对水平埋管换热能力的影响分析[J]. 太阳能学报, 2022, 43(5): 10-20.
ZOU X, PEI P, HAO D Y, et al.Influence of soil water retention characteristics on heat transfer performance of horizontal buried pipes[J]. Acta energiae solaris sinica, 2022, 43(5): 10-20.
[4] 李永. 防护工程地埋管换热器关键技术研究[D]. 南京: 解放军理工大学, 2014.
LI Y.Research on key technology of ground heat exchanger in protection engineering[D]. Nanjing: PLA University of Science and Technology, 2014.
[5] 茅靳丰, 陈尚沅, 李永. 埋管换热器对地表温度影响的模拟分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(1): 38-43.
MAO J F, CHEN S Y, LI Y.Simulational analysis of effect of buried tube heat exchanger on land surface temperature[J]. Journal of PLA University of Science and Technology (natural science edition), 2014, 15(1): 38-43.
[6] 杨卫波, 徐瑞, 汪峰, 等. 水平spiral型地埋管换热器传热特性的数值模拟及实验验证[J]. 工程热物理学报, 2021, 42(8): 2122-2131.
YANG W B, XU R, WANG F, et al.Numerical simulation and experimental validation on the heat transfer characteristics of horizontal spiral coil ground heat exchanger[J]. Journal of engineering thermophysics, 2021, 42(8): 2122-2131.
[7] CHOI J C, LEE S R, LEE D S.Numerical simulation of vertical ground heat exchangers: intermittent operation in unsaturated soil conditions[J]. Computers and geotechnics, 2011, 38(8): 949-958.
[8] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America journal, 1980, 44(5): 892.
[9] GHANBARIAN-ALAVIJEH B, LIAGHAT A, HUANG G H, et al.Estimation of the van genuchten soil water retention properties from soil textural data[J]. Pedosphere, 2010, 20(4): 456-465.
[10] MIHALAKAKOU G.On estimating soil surface temperature profiles[J]. Energy and buildings, 2002, 34(3): 251-259.
[11] METZ P D.Ground coupled heat pump system experimental results[D]. Upton: Brookhaven National Laboratory, 1983.