环境因素对光伏组件的温度及输出特性影响研究

吕玉坤, 赵润一, 周庆文, 赵伟萍

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 194-203.

PDF(2102 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2102 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 194-203. DOI: 10.19912/j.0254-0096.tynxb.2023-1229

环境因素对光伏组件的温度及输出特性影响研究

  • 吕玉坤1, 赵润一1, 周庆文2, 赵伟萍3
作者信息 +

INVESTIGATION ON INFLUENCE OF ENVIRONMENTAL FACTORS ON TEMPERATURE AND OUTPUT CHARACTERISTICS OF SOLAR PV MODULES

  • Lyu Yukun1, Zhao Runyi1, Zhou Qingwen2, Zhao Weiping3
Author information +
文章历史 +

摘要

为提升光伏发电效率,以本校YL250P-29b型多晶硅太阳电池封装组成的光伏组件串联而成的光伏阵列为研究对象,建立光伏组件温度数值模型。通过对比人工积灰试验数据与模拟结果,验证了该数值模型的合理性。以此模型为基础,模拟分析风速、辐照度、环境温度、积灰密度对光伏组件温度的影响;依据光电转换效率和输出功率的经验公式,探究了上述环境因素对光伏组件输出特性的影响规律。结果表明:光伏组件温度和光电转换效率与风速之间为负相关关系,与辐照度、环境温度、积灰密度之间为正相关关系;光伏组件输出功率与环境温度和积灰密度之间为负相关关系,与风速和辐照度之间为正相关关系。在该文的研究范围内,各环境因素与光伏组件温度和光电转换效率的关联顺序均为:环境温度>辐照度>风速>积灰密度,与输出功率的关联顺序为:辐照度>积灰密度>环境温度>风速;环境温度每升高1 ℃,光伏组件温度也升高约1 ℃,光电转换效率和输出功率分别下降约0.06%和0.4%;积灰使光伏组件温度下降,光电转换效率升高,但会极大降低光伏组件的输出功率。

Abstract

A photovoltaic array composed of YL250P-29b type polycrystalline silicon solar cells packaged in series at our school is taken as the research object in order to improve the efficiency of photovoltaic power generation. The rationality of the numerical model was verified by comparing the experimental data and simulation results of artificial ash accumulation. Based on this model, the effects of wind speed, irradiance, ambient temperature and ash density on the temperature of photovoltaic modules are simulated and analyzed. According to the empirical formula of photoelectric conversion efficiency and output power, the influence of the above environmental factors on the output characteristics of photovoltaic modules was explored. The results show that there is a negative correlation between PV module temperature, photoelectric conversion efficiency with wind speed, and positive correlation with irradiance, ambient temperature and ash density. There is a negative correlation between the output power of photovoltaic modules with ambient temperature and ash density, and a positive correlation with wind speed and irradiance. Within the scope of this study, the correlation order between each environmental factor and PV module temperature and photoelectric conversion efficiency is: ambient temperature> irradiance>wind speed>ash density, and the correlation order with output power is: irradiance>ash density>ambient temperature>wind speed; For every 1 ℃ increase in ambient temperature, the temperature of photovoltaic modules also increases by about 1 ℃, and the photoelectric conversion efficiency and output power decrease by about 0.06% and 0.4%, respectively. Ash accumulation reduces the temperature of photovoltaic modules and increases the photoelectric conversion efficiency, but it will greatly reduce the output power of photovoltaic modules.

关键词

光伏组件 / 光电转换效率 / 输出功率 / 环境因素 / 数值模拟

Key words

photovoltaic modules / photoelectric conversion efficiency / output power / environmental factors / numerical simulation

引用本文

导出引用
吕玉坤, 赵润一, 周庆文, 赵伟萍. 环境因素对光伏组件的温度及输出特性影响研究[J]. 太阳能学报. 2024, 45(11): 194-203 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1229
Lyu Yukun, Zhao Runyi, Zhou Qingwen, Zhao Weiping. INVESTIGATION ON INFLUENCE OF ENVIRONMENTAL FACTORS ON TEMPERATURE AND OUTPUT CHARACTERISTICS OF SOLAR PV MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 194-203 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1229
中图分类号: TM615   

参考文献

[1] 郑隽卿, 罗勇, 常蕊, 等. 大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报, 2023, 44(8): 253-265.
ZHENG J Q, LUO Y, CHANG R, et al.Study on impact of large-scaled photovoltaic development on local climate and ecosystem[J]. Acta energiae solaris sinica, 2023, 44(8): 253-265.
[2] 时雯. 传热能力对光伏电池特性的影响[D]. 重庆: 重庆大学, 2014.
SHI W.Influence of heat transfer capacity on characteristics of photovoltaic cells[D]. Chongqing: Chongqing University, 2014.
[3] KRAUTER S.Increased electrical yield via water flow over the front of photovoltaic panels[J]. Solar energy materials and solar cells, 2004, 82(1/2): 131-137.
[4] DUBEY S, SARVAIYA J N, SESHADRI B.Temperature dependent photovoltaic(PV)efficiency and its effect on PV production in the world: a review[J]. Energy procedia, 2013, 33: 311-321.
[5] 熊玉辉, 孙帅帅, 李少帅, 等. 基于影响因素权重的光伏组件现场性能退化率分区预测[J]. 太阳能学报, 2023, 44(10): 182-190.
XIONG Y H, SUN S S, LI S S, et al.Zoning prediction of field performance degration rate of PV modules based on weights of influencing factors[J]. Acta energiae solaris sinica, 2023, 44(10): 182-190.
[6] 赵明智, 王帅, 张志明, 等. 沙漠沙尘对光伏组件温度性能影响实验研究[J]. 太阳能学报, 2020, 41(6): 293-298.
ZHAO M Z, WANG S, ZHANG Z M, et al.Experimental study on effect of desert sand on temperature performance of photovoltaic modules[J]. Acta energiae solaris sinica, 2020, 41(6): 293-298.
[7] GOVERDE H, GOOSSENS D, GOVAERTS J, et al.Spatial and temporal analysis of wind effects on PV module temperature and performance[J]. Sustainable energy technologies and assessments, 2015, 11: 36-41.
[8] FIROOZZADEH M, SHIRAVI A, SHAFIEE M.An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment[J]. Iranian journal of energy and environment, 2019, 10(2): 80-84.
[9] 于佳禾, 许盛之, 张一平. 山地光伏电站各区域光伏组件的温度差异对比[J]. 南开大学学报, 2021, 54(5): 59-63.
YU J H, XU S Z, ZHANG Y P.Temperature difference of polycrystalline photovoltaic modules in mountain photovoltaic power station[J]. Journal of Nankai University, 2021, 54(5): 59-63.
[10] CHANCHANGI Y N, GHOSH A, BAIG H, et al.Soiling on PV performance influenced by weather parameters in Northern Nigeria[J]. Renewable energy, 2021, 180: 874-892.
[11] SIDDIQUI M U, ARIF A F M. Electrical, thermal and structural performance of a cooled PV module: transient analysis using a multiphysics model[J]. Applied energy, 2013, 112: 300-312.
[12] 肖雷, 官燕玲, 王妍. 风速、 风向对空载光伏组件温度分布影响的数值分析[EB/OL]. 北京: 中国科技论文在线[2015-02-02].https://www.paper.edu.cn/releasepapercontent/201502-1.
XIAO L, GUAN Y L, WANG Y.Numerical analysis of influence of wind speed and direction on temperature distribution of noload photovoltaic modules[EB/OL]. Beijing: China science and technology papers online[2015-02-02].https://www.paper.edu.cn/releasepapercontent/201502-1.
[13] 孟炎, 高德东, 铁成梁, 等. 交变温度场对光伏组件性能的影响研究[J]. 可再生能源, 2021, 39(3): 340-345.
MENG Y, GAO D D, TIE C L, et al.Research on the influence of alternating temperature field on the performance of photovoltaic modules[J]. Renewable energy resources, 2021, 39(3): 340-345.
[14] SOMMERFELD M, SGROTT O L Jr, TABORDA M A, et al. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition[J]. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, 2021, 166: 105959.
[15] LYU Y K, ZHAO W P, YAN W P, et al.Optimization of the contamination particle deposition model based on humidity and surface energy[J]. Applied thermal engineering, 2019, 157: 113734.
[16] 朱静燕, 邹帅, 孙华, 等. 环境温度下晶硅光伏组件的直冷背板散热分析[J]. 物理学报, 2021, 70(9): 409-416.
ZHU J Y, ZOU S, SUN H, et al.Analyses of heat dissipation of direct-cooling backsheets of crystalline silicon photovoltaic modules at ambient temperatures[J]. Acta physica sinica, 2021, 70(9): 409-416.
[17] YA’ACOB M E, HIZAM H, KHATIB T, et al. Modelling of photovoltaic array temperature in a tropical site using generalized extreme value distribution[J]. Journal of renewable and sustainable energy, 2014, 6(3): 4370-4377.
[18] ZHAO W P, LYU Y K, ZHOU Q W, et al.Collision-adhesion mechanism of particles and dust deposition simulation on solar PV modules[J]. Renewable energy, 2021, 176: 169-182.
[19] 赵伟萍, 吕玉坤, 阎维平. 污秽颗粒在太阳能光伏组件表面的沉积机理及组件积灰特性数值模拟[J]. 动力工程学报, 2022, 42(4): 316-325, 340.
ZHAO W P, LYU Y K, YAN W P.Deposition mechanism of dust particles on the solar PV module surfaces and simulation on dust accumulation characteristics[J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 316-325, 340.
[20] 周涛, 杨旭, 林达平, 等. 湿度对矩形窄通道内细颗粒热泳沉积的影响[J]. 上海交通大学学报, 2015, 49(5): 718-724.
ZHOU T, YANG X, LIN D P, et al.Impact of humidity on aerosol thermophoretic deposition rectangular narrow channel[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5): 718-724.
[21] 周西华, 王继仁, 洪林. 湿空气密度的快速准确测算方法[J]. 矿业安全与环保, 2005, 32(4): 49-50.
ZHOU X H, WANG J R, HONG L.Rapid and accurate calculation method of wet air density[J]. Mining safety & environmental protection, 2005, 32(4): 49-50.
[22] 官燕玲, 张豪, 闫旭洲, 等. 灰尘覆盖对光伏组件性能影响的原位实验研究[J]. 太阳能学报, 2016, 37(8): 1944-1950.
GUAN Y L, ZHANG H, YAN X Z, et al.Experimental study of influence of dust cover on performance of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1944-1950.
[23] SARTORI E.Convection coefficient equations for forced air flow over flat surfaces[J]. Solar energy, 2006, 80(9): 1063-1071.
[24] DE SOTO W, KLEIN S A, BECKMAN W A.Improvement and validation of a model for photovoltaic array performance[J]. Solar energy, 2006, 80(1): 78-88.
[25] SKOPLAKI E, PALYVOS J A.On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations[J]. Solar energy, 2009, 83(5): 614-624.

PDF(2102 KB)

Accesses

Citation

Detail

段落导航
相关文章

/