太阳电池红外协风焊接热场温度稳定性研究

麻超, 刘超, 张向前, 王帆, 于波, 戎瑞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 178-182.

PDF(4107 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4107 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 178-182. DOI: 10.19912/j.0254-0096.tynxb.2023-1230

太阳电池红外协风焊接热场温度稳定性研究

  • 麻超1,2, 刘超1,2, 张向前1,2, 王帆1,2, 于波1~3, 戎瑞4
作者信息 +

STUDY ON TEMPERATURE STABILITY OF INFRARED SYNERGY WIND SOLDERING THERMAL FIELD IN SOLAR CELL

  • Ma Chao1,2, Liu Chao1,2, Zhang Xiangqian1,2, Wang Fan1,2, Yu Bo1~3, Rong Rui4
Author information +
文章历史 +

摘要

采用数值模拟结合正交试验的方法分析太阳电池焊接传热过程,研究不同工艺参数对温度稳定性的影响作用。通过正交试验设计方法规划试验方案,利用CFD传热仿真模拟焊接传热过程获取试验数据,分析仿真数据得到最优工艺参数组合。结果表明:中心灯管功率为55 W、预热温度为150 ℃、灯管高度为25 mm、焊接时间为2.2 s、边缘灯管功率为70 W、空气流速为0.6 m/s时焊接热场温度稳定性最高,此时模拟温度与最佳温度的差值为3.5 ℃。

Abstract

Using numerical simulation combined with orthogonal experiments to analyze the soldering heat transfer process of solar cells, and studying the effect of different process parameters on temperature stability. The orthogonal experiments design method is used to plan the test plan, and the CFD heat transfer simulation is used to simulate the soldering heat transfer process to obtain the test data. The simulation data are analyzed to obtain the optimal process parameter combination. The results show that when the power of the central lamp is 55 W, the preheating temperature is 150 ℃, the lamp height is 25 mm, the soldering time is 2.2 s, the power of the edge lamp is 70 W, the air flow rate is 0.6 m/s, the temperature stability of the soldering thermal field is highest, and the difference between the simulated temperature and the optimal temperature is 3.5 ℃.

关键词

太阳电池 / 红外线加热 / 数值模拟 / 正交试验

Key words

solar cells / infrared heating / numerical simulation / orthogonal experiment

引用本文

导出引用
麻超, 刘超, 张向前, 王帆, 于波, 戎瑞. 太阳电池红外协风焊接热场温度稳定性研究[J]. 太阳能学报. 2024, 45(11): 178-182 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1230
Ma Chao, Liu Chao, Zhang Xiangqian, Wang Fan, Yu Bo, Rong Rui. STUDY ON TEMPERATURE STABILITY OF INFRARED SYNERGY WIND SOLDERING THERMAL FIELD IN SOLAR CELL[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 178-182 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1230
中图分类号: TM914.4   

参考文献

[1] 孙国辉, 晏石林, 陈刚. 太阳电池组件焊接过程残余应力的数值模拟[J]. 太阳能学报, 2011, 32(5): 694-697.
SUN G H, YAN S L, CHEN G.Numerical simulation on the residual stress of jointing process of solar cell module[J]. Acta energiae solaris sinica, 2011, 32(5): 694-697.
[2] 刘翰林, 张乘胤, 张能辉. 光伏组件单元的热应力和内力分析[J]. 太阳能学报, 2020, 41(8): 215-220.
LIU H L, ZHANG C Y, ZHANG N H.Thermal stress and internal force analysis of PV module[J]. Acta energiae solaris sinica, 2020, 41(8): 215-220.
[3] TIMOSHENKO S.Analysis of bi-metal thermostats[J]. JOSA, 1925, 11(3): 233-255.
[4] HSIAO P C, SHEN X W, WANG Z M, et al.Balanced contact method: reduction of thermomechanical stress in silicon solar cells induced by interconnection[J]. Solar energy materials and solar cells, 2020, 215: 110667.
[5] LAI C M, SU C H, LIN K M.Analysis of the thermal stress and warpage induced by soldering in monocrystalline silicon cells[J]. Applied thermal engineering, 2013, 55(1/2): 7-16.
[6] GABOR A M, RALLI M, MONTMINY S, et al.Soldering induced damage to thin Si solar cells and detection of cracked cells in modules[C]//21st European Photovoltaic Solar Energy Conference. Dresden, Germany, 2006.
[7] 马登成, 曹雨轩, 桂学. 红外热风协同加热实验台结构设计与仿真验证[J]. 哈尔滨工业大学学报, 2023, 55(3): 49-57.
MA D C, CAO Y X, GUI X.Structural design and simulation verification of experimental platform for infrared and hot air collaborative heating[J]. Journal of Harbin Institute of Technology, 2023, 55(3): 49-57.
[8] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 5版. 北京: 中国建筑工业出版社, 2007.
ZHANG X M, REN Z P, MEI F M.Heat transmission science[M]. 5th ed. Beijing: China Architecture & Building Press, 2007.
[9] 柳晓宁, 任杰, 朱熙, 等. 石英灯阵高温试验环境换热特性仿真分析[J]. 航天器环境工程, 2022, 39(1): 26-32.
LIU X N, REN J, ZHU X, et al.Heat transfer simulation of high-temperature test environment with quartz lamp array[J]. Spacecraft environment engineering, 2022, 39(1): 26-32.
[10] 周涛, 贾地, 高晟耀, 等. 舰艇高温管路热振耦合试验系统研制[J]. 计算机测量与控制, 2021, 29(5): 136-140.
ZHOU T, JIA D, GAO S Y, et al.Development of thermal vibration coupling test system for warship pipeline[J]. Computer measurement & control, 2021, 29(5): 136-140.
[11] 李建勋. 全自动串焊机之工艺分析与结构优化设计[D]. 南京: 东南大学, 2017.
LI J X.Process analysis and structural optimization design of automatic series welding machine[D]. Nanjing: Southeast University, 2017.
[12] CHÁVEZ-URBIOLA E A, VOROBIEV Y V, BULAT L P. Solar hybrid systems with thermoelectric generators[J]. Solar energy, 2012, 86(1): 369-378.
[13] TIPPABHOTLA S K, RADCHENKO I, SONG W J, et al.Effect of interconnect plasticity on soldering induced residual stress in thin crystalline silicon solar cells[C]//2016 IEEE 18th Electronics Packaging Technology Conference (EPTC). Singapore, 2016: 734-737.
[14] LIN K M, LEE Y H, HUANG W Y, et al.Detection of soldering induced damages on crystalline silicon solar modules fabricated by hot-air soldering method[J]. Renewable energy, 2015, 83: 749-758.
[15] NASR ESFAHANI S, ASGHARI S, RASHID-NADIMI S.A numerical model for soldering process in silicon solar cells[J]. Solar energy, 2017, 148: 49-56.
[16] 卢为开, 李铁津, 张泽清. 远红外辐射加热技术[M]. 上海: 上海科学技术出版社, 1983.
LU W K, LI T J, ZHANG Z Q.Far infrared radiation heating technology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1983.

基金

国家重点研发计划(2022YFB4200105);战略性技术专项(23314301L)

PDF(4107 KB)

Accesses

Citation

Detail

段落导航
相关文章

/