为抑制潮流能水轮机叶片根部的边界层流动分离,提高水轮机叶片的发电效率,将格尼襟翼(GF)和涡流发生器(VGs)附加件组合引入到潮流能水轮机叶片设计领域。以NACA63418翼型为对象,分别建立原始叶片、带GF叶片、带VGs叶片、带GF和VGs附加件组合的叶片模型。通过试验和CFD数值模拟相结合的方法,研究单独加装GF和VGs对水轮机三维扭曲叶片的影响效果和作用机理,进而开展GF和VGs组合式叶片附加件对水轮机叶片水动力学特性的影响规律的研究。结果表明:1) 对直径为700 mm的原始水轮机叶片,其叶片吸力侧根部容易发生流动分离和径向流动;2) 单独安装GF既能改善水轮机叶片根部翼型尾缘处的径向流动,又能增大叶片翼型的后半部分上下表面的压差,且当GF高度为2.0%C时,最佳叶尖速比(λ=5)下的叶片获能系数可提高约1.7%;3) 单独安装VGs可通过抑制叶片根部的流动分离,使处在最佳叶尖速比下的叶片获能系数提高约1.0%;4) 安装GF和VGs组合式叶片附加件可将单独加装二者的优势充分融合,既能有效抑制叶片根部的流动分离,又能全面增大叶片翼型上下表面的压差,叶片获能系数可提高约1.7%~4.8%,其中最佳叶尖速比下的叶片获能系数可提高约2.5%。
Abstract
In order to suppress the boundary layer flow separation at the root of the tidal turbine blade and improve the power efficiency of the tidal turbine blade, this paper introduces the combined circulation control of Gurney flap (GF) and Vortex generators (VGs) into the field of turbine blade design. Based on the NACA63418 hydrofoil, the blade models with GF, VGs, and their combination are established respectively. Through the combination of experiment and CFD numerical simulation, the effect of GF and VGs installed separately on the three-dimensional twisted blades of the turbine are studied, and then the research on the influence of their combination is carried out. The results show that: 1) For the original turbine blades with a diameter of 700 mm, the root of the blade suction side is prone to flow separation and radial flow; 2) Installing GF can not only improve the radial flow at the root of the turbine blade hydrofoil trailing edge, but also increase the pressure on the upper and lower surfaces of the second half of the blade hydrofoil, and when the GF height is 2.0%C (C is the chord length of the blade hydrofoil), the power efficiency coefficient can be increased by about 1.7% at the optimal tip speed ratio (λ=5); 3) Installing VGs can increase the power efficiency coefficient at the best tip speed ratio by about 1.0% by suppressing the flow separation at the blade root; 4) The combined circulation control of GF and VGs can combine both of their advantages, and it can not only effectively suppress the flow separation at the root of the blades, but also increase the pressure difference between the upper and lower surfaces of the blade hydrofoil. The power efficiency can be increased by about 1.7%-4.8%, and the power efficiency coefficient at the best tip speed ratio can be increased by about 2.5%.
关键词
潮流能 /
水轮机叶片 /
数值模拟 /
涡流发生器 /
格尼襟翼 /
流动控制组合
Key words
tidal power /
blade hydrofoil /
numerical simulation /
vortex generators /
gurney flap /
combined flow control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡振辉, 袁鹏, 司先才, 等. 数据驱动的潮流能水轮机叶片翼型性能保真替代计算模型对比研究[J]. 太阳能学报, 2022, 43(12): 495-502.
HU Z H, YUAN P, SI X C, et al.Comparative study of surrogate calculation models for performance of blade hydrofoil of tidal turbine based on data-driven[J]. Acta energiae solaris sinica, 2022, 43(12): 495-502.
[2] KUNDU P.Hydrodynamic design of a horizontal axis current turbine with passive flow control using vortex generator and inserted tube[J]. International journal of green energy, 2024, 21(1): 143-153.
[3] 吴柏慧, 李春, 朱海天, 等. 风力机叶片被动流动控制技术研究进展[J]. 热能动力工程, 2019, 34(9): 24-40.
WU B H, LI C, ZHU H T, et al.Research progress of passive flow control technology for wind turbine blade[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 24-40.
[4] 崔钊, 高华, 韩东, 等. 格尼襟翼对低雷诺数翼型流场的影响研究[J]. 计算机仿真, 2018, 35(7): 15-21.
CUI Z, GAO H, HAN D, et al.Study on impact of gurney flaps on low Reynolds number airfoil flowfield[J]. Computer simulation, 2018, 35(7): 15-21.
[5] ALBER J, SOTO-VALLE R, MANOLESOS M, et al.Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine[J]. Wind energy science, 2020, 5(4): 1645-1662.
[6] YAO Y, MA D L, ZHANG L, et al.Aerodynamic optimization and analysis of low Reynolds number propeller with gurney flap for ultra-high-altitude unmanned aerial vehicle[J]. Applied sciences, 2022, 12(6): 3195.
[7] HAO L S, GAO C, SONG W P, et al.Airfoil flow control using vortex generators and a Gurney flap[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2013, 227(12): 2701-2706.
[8] SKRZYPIŃSKI W, GAUNAA M, BAK C, et al. Increase in the annual energy production due to a retrofit of vortex generators on blades[J]. Wind energy, 2020, 23(3): 617-626.
[9] 江瑞芳, 赵振宙, 冯俊鑫, 等. 涡流发生器对风力机叶片流动控制的数值研究[J]. 工程热物理学报, 2021, 42(12): 3170-3177.
JIANG R F, ZHAO Z Z, FENG J X, et al.Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of engineering thermophysics, 2021, 42(12): 3170-3177.
[10] 郝礼书, 乔志德, 宋文萍. 基于涡流发生器和Gurney襟翼的翼型绕流流动控制试验研究[J]. 航空学报, 2011, 32(8): 1429-1434.
HAO L S, QIAO Z D, SONG W P.Experimental research on control flow over airfoil based on vortex generator and gurney flap[J]. Acta aeronautica et astronautica sinica, 2011, 32(8): 1429-1434.
[11] ALBER J, MANOLESOS M, WEINZIERL-DLUGOSCH G, et al.Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance[J]. Wind energy science, 2022, 7(3): 943-965.
[12] REN Y R, LIU B W, ZHANG T T, et al.Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets[J]. Ocean engineering, 2017, 144: 374-383.
[13] MENTER F R, KUNTZ M, LANGTRY R, et al.Ten years of industrial experience with the SST turbulence model[J]. Turbulence heat and mass transfer, 2003, 4(1): 625-632.
[14] LEE T, LEE L.Effect of gurney flap on unsteady wake vortex[J]. Journal of aircraft, 2007, 44(4): 1398-1402.
[15] 杨瑞, 郭瑞, 张康康, 等. 襟翼高度对风力机气动性能影响[J]. 太阳能学报, 2020, 41(11): 248-253.
YANG R, GUO R, ZHANG K K, et al.Effect of gurney flap height on wind turbine aerodynamic performance[J]. Acta energiae solaris sinica, 2020, 41(11): 248-253.
[16] JAIN S, SITARAM N, KRISHNASWAMY S.Computational investigations on the effects of gurney flap on airfoil aerodynamics[J]. International scholarly research notices, 2015, 2015: 402358.
[17] GRAHAM M, MURADIAN A, TRAUB L W.Experimental study on the effect of gurney flap thickness on airfoil performance[J]. Journal of aircraft, 2017, 55(2): 897-904.
[18] 江瑞芳, 赵振宙, 刘惠文, 等. 涡流发生器安装参数对风力机翼段动态失速影响[J]. 太阳能学报, 2023, 44(1): 218-225.
JIANG R F, ZHAO Z Z, LIU H W, et al.Influence of vortex generators installation parameters on dynamic stall of wind turbine airfoil[J]. Acta energiae solaris sinica, 2023, 44(1): 218-225.
[19] ZHU C Y, WANG T G, WU J H.Numerical investigation of passive vortex generators on a wind turbine airfoil undergoing pitch oscillations[J]. Energies, 2019, 12(4): 654.
[20] LIN J C.Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in aerospace sciences, 2002, 38(4/5): 389-420.
[21] FOUATIH O M, MEDALE M, IMINE O, et al.Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators[J]. European journal of mechanics-B/fluids, 2016, 56: 82-96.
[22] CHEN H.Numerical investigation of the effects of vortex generators on the Bell A821201 airfoil[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2021, 43(11): 516.
[23] 刘永辉, 者浩楠, 谭俊哲, 等. 涡流发生器对潮流能水轮机叶片流动分离特性影响研究[J]. 太阳能学报, 2022, 43(11): 358-363.
LIU Y H, ZHE H N, TAN J Z, et al.Study on influence of vortex generator on flow separation characteristics of tidal turbine blades[J]. Acta energiae solaris sinica, 2022, 43(11): 358-363.
基金
山东省自然科学基金(ZR2021ME095);国家重点研发计划(2018YFB1501903);山东省重点研发计划(2019GGX103012)