基于NSGA权值修正的MPC方法及其在光氢系统应用

梁媛, 王红庆

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 131-140.

PDF(4017 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4017 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 131-140. DOI: 10.19912/j.0254-0096.tynxb.2023-1236

基于NSGA权值修正的MPC方法及其在光氢系统应用

  • 梁媛, 王红庆
作者信息 +

MPC METHOD BASED ON NSGA WEIGHT CORRECTION AND ITS APPLICATION IN PHOTOHYDROGEN SYSTEM

  • Liang Yuan, Wang Hongqing
Author information +
文章历史 +

摘要

针对模型预测控制(MPC)优化控制方法中权值修正问题,以光氢系统为研究背景,搭建一种非支配排序遗传算法(NSGA)修正MPC中权值的复合模型。以NSGA为外层函数,以储能电池出力能力评价系数、储能电池充/放电总能量和碱性电解槽(AEL)功率波动率为目标函数,将权值作为NSGA-MPC复合模型的输入变量进行选择、交叉、变异;以MPC优化控制方法为内层函数,针对不同权值,将计算得出的不同输出变量作为NSGA中目标函数的输入变量,经过遍历、寻优,最终得到最优权值。将最优权值结合现有研究成果中MPC优化控制所用权值围绕三方面进行对比分析,包括:目标函数值、MPC优化控制追踪效果、电解槽和储能电池功率波动率。结果表明,所得最优权值一定程度上降低了电解槽和储能电池的功率波动,优化了MPC控制追踪效果。

Abstract

Addressing the weight adjustment issue in MPC (model predictive control) optimization, a composite model is constructed for NSGA (non-dominated sorting genetic algorithms) based weight modification, taking the photo-hydrogen system as the research background. NSGA is used as the outer function, with the evaluation coefficients of the energy storage battery’s output capability, the total energy of the energy storage battery’s charge/discharge, and the AEL power fluctuation rate as objective functions. The weights are treated as input variables for the NSGA-MPC composite model, where they undergo selection, crossover, and mutation. The MPC optimization control method serves as the inner function, and for different weights, the computed output variables are used as input variables for the NSGA’s objective functions. After traversing and optimizing, the optimal weights are obtained. The optimal weights are compared with the existing research results in MPC optimization control regarding three aspects: objective function values, MPC tracking performance, and power fluctuation of the electrolyzer and energy storage battery. The results indicate that the optimal weights obtained in this study have partially reduced the power fluctuation of the electrolyzer and energy storage battery, thereby optimizing the MPC control tracking performance.

关键词

遗传算法 / 模型预测控制 / 权值 / 制氢 / 光氢系统

Key words

genetic algorithms / model predictive control / weighing / hydrogen production / photohydrogen system

引用本文

导出引用
梁媛, 王红庆. 基于NSGA权值修正的MPC方法及其在光氢系统应用[J]. 太阳能学报. 2024, 45(11): 131-140 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1236
Liang Yuan, Wang Hongqing. MPC METHOD BASED ON NSGA WEIGHT CORRECTION AND ITS APPLICATION IN PHOTOHYDROGEN SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 131-140 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1236
中图分类号: TQ116.2   

参考文献

[1] 李钢, 王勇, 石怀龙, 等. 高速列车主动抗蛇行减振器的模型预测控制[J]. 机械制造与自动化, 2023, 52(2): 166-172, 192.
LI G, WANG Y, SHI H L, et al.Model predictive control of active yaw damper for high-speed EMUS[J]. Machine building & automation, 2023, 52(2): 166-172, 192.
[2] 马文忠, 王晓康, 赵雨, 等. 适用于多端口模块化多电平交直流变换器的分段变步长模型预测控制策略[J]. 电力系统保护与控制, 2023, 51(8): 13-25.
MA W Z, WANG X K, ZHAO Y, et al.Piecewise variable step-size model predictive control strategy for multi-port modular multilevel AC/DC converter[J]. Power system protection and control, 2023, 51(8): 13-25.
[3] 乐健, 廖小兵, 章琰天, 等. 电力系统分布式模型预测控制方法综述与展望[J]. 电力系统自动化, 2020, 44(23): 179-191.
LE J, LIAO X B, ZHANG Y T, et al.Review and prospect on distributed model predictive control method for power system[J]. Automation of electric power systems, 2020, 44(23): 179-191.
[4] 余瑜, 汪健, 杨文康. 基于逆向预测的MMC多步模型预测控制[J]. 计算机仿真, 2023, 40(5): 166-171.
YU Y, WANG J, YANG W K.Multi-step model predictive control of MMC based on reverse prediction[J]. Computer simulation, 2023, 40(5): 166-171.
[5] 郑之杰, 黄静思, 黄元生. 基于模型预测控制的水电制氢系统优化调度研究[J]. 电力科学与工程, 2022, 38(7): 25-33.
ZHENG Z J, HUANG J S, HUANG Y S.Optimal scheduling of hydro-electricity hydrogen production system based on model predictive control[J]. Electric power science and engineering, 2022, 38(7): 25-33.
[6] 李建林, 李光辉, 马速良, 等. 氢能储运技术现状及其在电力系统中的典型应用[J]. 现代电力, 2021, 38(5): 535-545.
LI J L, LI G H, MA S L, et al.An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern electric power, 2021, 38(5): 535-545.
[7] 刘肖杰. 基于分布式模型预测控制的孤岛微电网电压协调优化控制策略研究[D]. 广州: 华南理工大学, 2022.
LIU X J.Coordinated optimization control strategy of voltage for islanded microgrid based on distributed model predictive control[D]. Guangzhou: South China University of Technology, 2022.
[8] 刘颖明, 王晓东, 彭朝阳. 计及储能出力水平的平滑风电功率模型预测控制策略[J]. 电网技术, 2020, 44(5): 1723-1731.
LIU Y M, WANG X D, PENG C Y.Model predictive control strategy for smoothing wind power with energy storage output level[J]. Power system technology, 2020, 44(5): 1723-1731.
[9] 马伟栋, 高丙朋, 杨武帮, 等. 引入权值修正预测控制的风电叶片自适应组合抑振策略研究[J]. 太阳能学报, 2022, 43(8): 382-390.
MA W D, GAO B P, YANG W B, et al.Research on adaptive combined vibration suppression strategy of wind power blade based on weight modified predictive control[J]. Acta energiae solaris sinica, 2022, 43(8): 382-390.
[10] 刘准. 智能车轨迹规划与模型预测控制[D]. 赣州: 江西理工大学, 2022.
LIU Z.Intelligent vehicle trajectory planning and model prediction control[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
[11] 杜祥伟, 沈艳霞, 李静. 基于模型预测控制的直流微网混合储能能量管理策略[J]. 电力系统保护与控制, 2020, 48(16): 69-75.
DU X W, SHEN Y X, LI J.Energy management strategy of DC microgrid hybrid energy storage based on model predictive control[J]. Power system protection and control, 2020, 48(16): 69-75.
[12] 于家敏. 基于模型预测控制的风光氢耦合系统功率调控策略研究[D]. 吉林: 东北电力大学, 2021.
YU J M.Study on power regulation strategy of wind photovoltaic and hydrogrn coupling system based on model predictive control[D]. Jilin: Northeast Dianli University, 2021.
[13] 孔令国, 于家敏, 蔡国伟, 等. 基于模型预测控制的离网电氢耦合系统功率调控[J]. 中国电机工程学报, 2021, 41(9): 3139-3149.
KONG L G, YU J M, CAI G W, et al.Power regulation of off-grid electro-hydrogen coupled system based on model predictive control[J]. Proceedings of the CSEE, 2021, 41(9): 3139-3149.
[14] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[15] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[16] 马宏达, 邓义斌, 郭强波. 基于遗传算法的二自由度波浪能装置阵列优化[J]. 太阳能学报, 2022, 43(6): 264-269.
MA H D, DENG Y B, GUO Q B.Optimization of 2-dof wave energy converters array based on genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(6): 264-269.
[17] 张强, 缪维跑, 刘青松, 等. 基于多目标遗传算法的垂直轴风力机专用翼型优化设计[J]. 太阳能学报, 2023, 44(4): 9-16.
ZHANG Q, MIAO W P, LIU Q S, et al.Optimal design of vertical axis wind turbine special airfoil based on multi-objective genetic algorithm[J]. Acta energiae solaris sinica, 2023, 44(4): 9-16.
[18] 邹见效, 戴碧蓉, 彭超, 等. 基于荷电状态分级优化的混合储能风电功率平抑方法[J]. 电力系统自动化, 2013, 37(24): 1-6.
ZOU J X, DAI B R, PENG C, et al.Wind power smoothing method using hybrid energy storage system based on SOC hierarchical optimization[J]. Automation of electric power systems, 2013, 37(24): 1-6.

基金

国家自然科学基金(41773092)

PDF(4017 KB)

Accesses

Citation

Detail

段落导航
相关文章

/