基于代理模型与Wilson法的低流速下水轮机翼型优化研究

申春赟, 章嘉豪, 丁成林, 王世明, 娄嘉奕

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 604-611.

PDF(8866 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(8866 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 604-611. DOI: 10.19912/j.0254-0096.tynxb.2023-1242

基于代理模型与Wilson法的低流速下水轮机翼型优化研究

  • 申春赟1, 章嘉豪1, 丁成林2, 王世明1,3, 娄嘉奕4
作者信息 +

RESEARCH ON OPTIMIZATION OF TURBINE AIRFOIL AT LOW FLOW RATE BASED ON PROXY MODEL AND WILSON METHOD

  • Shen Chunyun1, Zhang Jiahao1, Ding Chenglin2, Wang Shiming1,3, Lou Jiayi4
Author information +
文章历史 +

摘要

针对中国绝大部分海域平均流速低导致水轮机适用性不足的问题,在低流速下对经过代理模型优化前后的设计翼型进行数值仿真优化研究。基于儒可夫斯基定理对低速潮流能翼型构建模型进行设计,得到相对厚度12%、相对弯度2.5%的原始翼型;通过代理模型设置4阶CST方程进行参数优化。结果表明,厚度较薄、弯度较大的翼型水动力性能更优异,优化后最大厚度点前移4.58%,升阻比提升4.03%,为水轮机叶轮翼型设计在低流速研究工作提供新的思路。

Abstract

Aiming at the problem that the low average flow velocity in most sea areas of China leads to insufficient applicability of hydraulic turbines, the airfoil design before and after optimization by surrogate model is optimized in two and three dimensions at low flow velocity. Based on the Rukowski theorem, the model of low velocity tidal current energy airfoil is designed, and the original airfoil with relative thickness of 12% and relative camber of 2.5% is obtained. The 4th-order CST equation is set in the proxy model to optimize the parameters. The results show that the airfoil with thinner thickness and larger camber has better hydrodynamic performance. After optimization, the maximum thickness point moves forward by 4.58%, and the lift-drag ratio increases by 4.03%, so the blade power is more stable and excellent, which provides new ideas for the research of airfoil design of hydraulic turbine impeller at low flow velocity.

关键词

水轮机 / 数值模拟 / 翼型 / 代理模型 / 低流速

Key words

hydraulic turbine generators / numerical simulation / airfoil / surrogate model / low flow velocity

引用本文

导出引用
申春赟, 章嘉豪, 丁成林, 王世明, 娄嘉奕. 基于代理模型与Wilson法的低流速下水轮机翼型优化研究[J]. 太阳能学报. 2024, 45(11): 604-611 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1242
Shen Chunyun, Zhang Jiahao, Ding Chenglin, Wang Shiming, Lou Jiayi. RESEARCH ON OPTIMIZATION OF TURBINE AIRFOIL AT LOW FLOW RATE BASED ON PROXY MODEL AND WILSON METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 604-611 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1242
中图分类号: TK730.2   

参考文献

[1] 孙召成, 李增亮, 徐朝政, 等. 潮流能水轮机翼型升阻比与空化性能优化研究[J]. 太阳能学报, 2019, 40(12): 3331-3338.
SUN Z C, LI Z L, XU C Z, et al.Optimization of lift-drag ratio and cavitation performance for marine current turbine[J]. Acta energiae solaris sinica, 2019, 40(12): 3331-3338.
[2] 张耕, 姚建喜. 波浪中的螺旋桨水动力性能数值分析[J]. 上海交通大学学报, 2024, 58(2): 175-187.
ZHANG G, YAO J X.Numerical analysis of hydrodynamic performance of propeller in waves[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 175-187.
[3] 陈进, 王旭东, 沈文忠, 等. 风力机叶片的形状优化设计[J]. 机械工程学报, 2010, 46(3): 131-134.
CHEN J, WANG X D, SHEN W Z, et al.Optimization design of blade shapes for wind turbines[J]. Journal of mechanical engineering, 2010, 46(3): 131-134.
[4] 孙召成, 李增亮, 徐朝政, 等. 基于B样条与遗传算法的翼型优化实验研究[J]. 工程热物理学报, 2019, 40(12): 2806-2814.
SUN Z C, LI Z L, XU C Z, et al.Airfoil optimization and experimental research based on the B spline and genetic algorithm[J]. Journal of engineering thermophysics, 2019, 40(12): 2806-2814.
[5] 王永鼎, 李宁业. 采用遗传算法的海流能发电机叶片优化与研究[J]. 机械强度, 2021, 43(2): 327-332.
WANG Y D, LI N Y.Optimization and research of tidal turbine blades based on genetic algorithm[J]. Journal of mechanical strength, 2021, 43(2): 327-332.
[6] LAURENS J M, AIT-MOHAMMED M, TARFAOUI M.Design of bare and ducted axial marine current turbines[J]. Renewable energy, 2016, 89: 181-187.
[7] 高如君. 亚低速潮流能水轮机桨叶性能研究[D]. 杭州: 浙江大学, 2020.
GAO R J.Study on energy capturing performance of turbine blades under sub-low speed tidal current[D]. Hangzhou: Zhejiang University, 2020.
[8] 张之阳, 王晓航, 刘葳兴, 等. 水平轴潮流能叶轮设计与水动力特性分析[J]. 舰船科学技术, 2021, 43(1): 78-82, 88.
ZHANG Z Y, WANG X H, LIU W X, et al.Design and hydrodynamic performance analysis of horizontal axis tidal current turbine[J]. Ship science and technology, 2021, 43(1): 78-82, 88.
[9] GRASSO F.Design and optimization of tidal turbine Airfoil[J]. Journal of Aircraft, 2012, 49(2): 636-643.
[10] 任毅如, 张田田, 曾令斌. 基于遗传算法的潮流能水轮机翼型优化设计[J]. 湖南大学学报(自然科学版), 2015, 42(10): 59-64.
REN Y R, ZHANG T T, ZENG L B.Tidal turbine hydrofoil design method based on genetic algorithm[J]. Journal of Hunan University (natural sciences), 2015, 42(10): 59-64.
[11] YANG B, SHU X W.Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current[J]. Ocean engineering, 2012, 42: 35-46.
[12] 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报, 2013, 31(5): 829-836.
BU Y P, SONG W P, HAN Z H, et al.Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of northwestern polytechnical university, 2013, 31(5): 829-836.
[13] 王旭东, 陈进, Wenzhong Shen, 等. 风力机叶片翼型型线集成设计理论研究[J]. 中国机械工程, 2009, 20(2): 211-213, 228.
WANG X D, CHEN J, WENZHONG S, et al.Integration study on airfoil profile for wind turbines[J]. China mechanical engineering, 2009, 20(2): 211-213, 228.
[14] 胡勇军, 高一星. 基于Kriging模型和网格变形的翼型优化[J]. 科学技术创新, 2022(11): 53-56.
HU Y J, GAO Y X.Airfoil optimization based on Kriging model and mesh deformation[J]. Scientific and technological innovation, 2022(11): 53-56.
[15] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
HAN Z H.Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta aeronautica et astronautica sinica, 2016, 37(11): 3197-3225.
[16] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6): 759-764.
SUN M J, ZHAN H.Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta aerodynamica sinica, 2011, 29(6): 759-764.
[17] 陈娅玲. 潮流水轮机及阵列对周边流场影响研究[D]. 北京: 清华大学, 2015.
CHEN Y L.Study on the effects of tidal turbine and array on the flow field[D]. Beijing: Tsinghua University, 2015.
[18] 陈三木. 横轴潮流能水轮机翼型优化[D]. 哈尔滨: 哈尔滨工业大学, 2019.
CHEN S M.Horizontal axis tidal turbine hydrofoil optimization[D]. Harbin: Harbin Institute of Technology, 2019.
[19] 周鹏展, 何振, 王琦, 等. 基于Bezier曲线和弯度函数的翼型优化设计[J]. 长沙理工大学学报(自然科学版), 2020, 17(3): 90-94.
ZHOU P Z, HE Z, WANG Q, et al.Optimization design of airfoil based on Bezier curve and bend function[J]. Journal of Changsha University of Science & Technology (natural science), 2020, 17(3): 90-94.
[20] 刘华威, 吴永忠, 张朋杨, 等. 基于自适应模拟退火遗传算法的风力机翼型优化设计[J]. 可再生能源, 2018, 36(6): 930-934.
LIU H W, WU Y Z, ZHANG P Y, et al.Research on adaptive simulated annealing genetic algorithm in wind turbine airfoil optimization design[J]. Renewable energy resources, 2018, 36(6): 930-934.
[21] 鞠浩, 王旭东, 陆佳红. 基于混合参数化与粒子群算法的风力机翼型气动优化设计[J]. 太阳能学报, 2023, 44(5): 473-479.
JU H, WANG X D, LU J H.Aerddynamic optimization design of wind turbine airfoil based on hybrid parameterization and particle swarm algorithm[J]. Acta energiae solaris sinica, 2023, 44(5): 473-479.
[22] 兰雅梅, 张婷婷, 王世明, 等. 潮流能水轮机叶片结构设计及水动力性能分析[J]. 船舶工程, 2021, 43(4): 140-144.
LAN Y M, ZHANG T T, WANG S M, et al.Structure design and hydrodynamic performance analysis of tidal current turbine blades[J]. Ship engineering, 2021, 43(4): 140-144.
[23] 荆丰梅, 王毅, 郭彬, 等. 潮流能水轮机流场特性的数值与实验研究[J]. 太阳能学报, 2024, 45(8): 660-667.
JING F M, WANG Y, GUO B, et al.Numerical and experimental study of flow field characteristics of tidal energy turbines[J]. Acta energiae solaris sinica, 2024, 45(8): 660-667.
[24] 郭彬, 王大政, 夏岚, 等. 水平轴潮流涡轮池壁效应修正方法分析[J]. 太阳能学报, 2022, 43(9): 382-390.
GUO B, WANG D Z, XIA L, et al.Analysis of blockage correction methods for horizontal axis tidal stream turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 382-390.

基金

国家自然科学基金(No.41976194);上海市“科技创新行动计划”软科学研究项目(23692102600);上海市“科技创新行动计划”上海工程技术研究中心(19DZ2254800)

PDF(8866 KB)

Accesses

Citation

Detail

段落导航
相关文章

/