基于平均灰度值与随机森林算法的光伏组件积灰程度预测

陈佳豪, 杨建蒙, 翟永杰, 李斌, 曾侨飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 107-114.

PDF(2375 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2375 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 107-114. DOI: 10.19912/j.0254-0096.tynxb.2023-1245

基于平均灰度值与随机森林算法的光伏组件积灰程度预测

  • 陈佳豪1, 杨建蒙1, 翟永杰2, 李斌1, 曾侨飞1
作者信息 +

PREDICTION OF ASH ACCUMULATION DEGREE OF PHOTOVOLTAIC MODULES BASED ON AVERAGE GRAYSCALE VALUE AND RANDOM FOREST ALGORITHM

  • Chen Jiahao1, Yang Jianmeng1, Zhai Yongjie2, Li Bin1, Zeng Qiaofei1
Author information +
文章历史 +

摘要

通过对光伏组件可见光图像的灰度直方图进行数值化处理,引入平均灰度值的概念,结合学校搭建的光伏实验台,证实平均灰度值与光伏组件积灰密度之间存在对应关系。基于此结论,对内蒙某光伏电站视觉检测平台的图像进行识别与处理,将其与光伏发电数据相对应,发现随着时间的推移,清洁侧与积灰侧平均灰度值差值的变化与发电损失正相关。根据该实验台收集的气象及图像数据,通过随机森林算法建立积灰程度预测模型,在相关气象因素的基础上,结合前一天的积灰板平均灰度值共同作为输入变量,对积灰板平均灰度值进行逐天预测,并通过设置不同的调优参数提高预测算法寻优鲁棒性。

Abstract

This article numerically processes the grayscale histogram of visible light images of photovoltaic modules, introduces the concept of average grayscale value, and combines it with the photovoltaic experimental platform built by the school to confirm the corresponding relationship between the average grayscale value and the ash density of photovoltaic modules. Based on this conclusion, the image of a visual inspection platform for a photovoltaic power station in Inner Mongolia is identified and processed, and it is found that over time, the change in the average gray level difference between the clean side and the accumulated side is positively correlated with power generation loss. Based on the meteorological and image data collected by the experimental platform, a prediction model for the degree of ash accumulation is established using the random forest algorithm. Based on relevant meteorological factors, the average gray level of the ash accumulation board from the previous day is combined as the input variable to predict the average gray level of the ash accumulation board day by day. Different tuning parameters are set to improve the optimization robustness of the prediction algorithm.

关键词

光伏组件 / 积灰 / 随机森林 / 图像识别 / 平均灰度值

Key words

photovoltaic modules / ash deposition / random forest / image recognition / average grayscale value

引用本文

导出引用
陈佳豪, 杨建蒙, 翟永杰, 李斌, 曾侨飞. 基于平均灰度值与随机森林算法的光伏组件积灰程度预测[J]. 太阳能学报. 2024, 45(12): 107-114 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1245
Chen Jiahao, Yang Jianmeng, Zhai Yongjie, Li Bin, Zeng Qiaofei. PREDICTION OF ASH ACCUMULATION DEGREE OF PHOTOVOLTAIC MODULES BASED ON AVERAGE GRAYSCALE VALUE AND RANDOM FOREST ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 107-114 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1245
中图分类号: TM914   

参考文献

[1] 王成军, 韩延菲. 节能减排约束下的行业经济增长路径研究[J]. 资源与产业: 2023, 25(4): 1-11.
WANG C J,HAN Y F.Approaches to industry economic growth path constrained by energy-saving-emission reducing[J]. Resources and industry, 2023, 25(4): 1-11.
[2] RAMLI M A M, PRASETYONO E, WICAKSANA R W, et al. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions[J]. Renewable energy, 2016, 99: 836-844.
[3] DANU A,COCÂRŢĂ D,TANASIEV V,et al.The influence of dust deposition on the energy performance of the photovoltaics[J]. UPB scientific bulletin, series C:electrical engineering and computer science,2018,80:183-196.
[4] MAHDY A M J, IBRAHIM S I, AL-ZUBIDI D S M, et al. The influence of dust physical specifications photovoltaic modules performance[J]. IOP conference series: materials science and engineering, 2020, 928(2): 022123.
[5] WANG H D, MENG X Z, CHEN J B.Effect of air quality and dust deposition on power generation performance of photovoltaic module on building roof[J]. Building services engineering research and technology, 2020, 41(1): 73-85.
[6] MATTEI M, NOTTON G, CRISTOFARI C, et al.Calculation of the polycrystalline PV module temperature using a simple method of energy balance[J]. Renewable energy, 2006, 31(4): 553-567.
[7] ZAPATA J W, PEREZ M A, KOURO S, et al.Design of a cleaning program for a PV plant based on analysis of energy losses[J]. IEEE journal of photovoltaics, 2015, 5(6): 1748-1756.
[8] YANG M D, JI J, GUO B.An image-based method for soiling quantification[C]//2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2020: 89-94.
[9] SIMONAZZI M, CHIORBOLI G, COVA P, et al.Smart soiling sensor for PV modules[J]. Microelectronics reliability, 2020, 114: 113789.
[10] 刘志清, 兰奇逊, 徐林, 等. 基于图像处理的光伏局部阴影区域分割方法[J]. 太阳能学报, 2023, 44(2): 391-398.
LIU Z Q, LAN Q X, XU L, et al.Partial shading region segmentation of photovoltaic systems based on image processing[J]. Acta energiae solaris sinica, 2023, 44(2): 391-398.
[11] SOBUE M, OTAKE H, TAKEHARA H, et al.Enhancing infrared color reproducibility through multispectral image processing using RGB and three infrared channels[J]. Optical engineering, 2022, 61: 063107.
[12] CUI Y N, ZHI S Q, LIU W J, et al.An improved dark channel defogging algorithm based on the HSI colour space[J]. IET image processing, 2022, 16(3): 823-838.
[13] ZHANG X Q, WANG X S.Novel survey on the color-image graying algorithm[C]//2016 IEEE International Conference on Computer and Information Technology (CIT). Nadi, Fiji, 2016: 750-753.
[14] 王建明, 毛一鸣, 晏涛, 等. 光场图像透视变换算法[J]. 激光与光电子学进展, 2019, 56(15): 151003.
WANG J M, MAO Y M, YAN T, et al.Perspective transformation algorithm for light field image[J]. Laser & optoelectronics progress, 2019, 56(15): 151003.
[15] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[16] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating pv arrays through ir thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[17] RAO A, PILLAI R, MANI M, et al.Influence of dust deposition on photovoltaic panel performance[J]. Energy procedia, 2014, 54: 690-700.
[18] NIU D X, WANG K K, SUN L J, et al.Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study[J]. Applied soft computing, 2020, 93: 106389.
[19] JULAKHA JAHAN JUI, M. M. IMRAN MOLLA, BIFTA SAMA BARI, et al. Flat Price Prediction Using Linear and Random Forest Regression Based on Machine Learning Techniques[C]// Embracing Industry 4.0: 11th Malaysian Technical Universities Conference on Engineering and Technology. Kuantan, Malaysia, 2019.
[20] LI Z M, BAO S Q, GAO Z L.Short term prediction of photovoltaic power based on FCM and CG-DBN combination[J]. Journal of electrical engineering & technology, 2020, 15(1): 333-341.

PDF(2375 KB)

Accesses

Citation

Detail

段落导航
相关文章

/