大容积车载液氢瓶储运过程中的导热性能数值模拟分析

孙小伟, 刘宇航, 李飞, 郝永梅, 管凌峰, 沈俊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 555-561.

PDF(2031 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2031 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 555-561. DOI: 10.19912/j.0254-0096.tynxb.2023-1261

大容积车载液氢瓶储运过程中的导热性能数值模拟分析

  • 孙小伟1, 刘宇航2, 李飞1, 郝永梅2, 管凌峰1, 沈俊1
作者信息 +

SIMULATION STUDY ON THERMAL CONDUCTIVITY PERFORMANCE OF LARGE VOLUME VEHICLE LIQUID HYDROGEN CYLINDER DURING STORAGE AND TRANSPORTATION

  • Sun Xiaowei1, Liu Yuhang2, Li Fei1, Hao Yongmei2, Guan Lingfeng1, Shen Jun1
Author information +
文章历史 +

摘要

为研究大容积车载液氢瓶储运过程中的液氢瓶导热安全性问题,结合实际车载液氢瓶结构建立数值模型,在不同环境温度、压力以及加速度等参数变化情况下,分别对液氢瓶启停工况下单一参数和多参数耦合变化时液氢瓶内部温度及热通量变化进行模拟分析。结果表明:单一参数变化时,随着加速度增大,瓶内热通量升高;瓶内压力增大,热通量降低;环境温度越高,热通量越高。双因素耦合时,加速度增大会抑制环境温度降低对瓶内热通量的降低作用,同时促进压力升高对瓶内热通量的降低作用;压力增加会抑制环境温度升高对瓶内热通量的增加作用。

Abstract

A numerical model was established based on the actual structure of vehicle-mounted liquid hydrogen cylinders in order to study the thermal conduction safety of the cylinders during the storage and transportation of large-volume vehicles. The internal temperature and heat flux changes of the cylinders were simulated and analyzed under the coupling changes of single parameters and multi-parameters under the start-stop conditions of the cylinders under various environmental temperature, pressure, and acceleration conditions. The findings demonstrate that the heat flux in the cylinder increases as acceleration increases when a single parameter is changed. The heat flux falls as cylinder pressure rises; the heat flux increases with increasing room temperature. When there is a two-factor coupling, an increase in acceleration reduces the impact of ambient temperature decrease on the heat flux in the cylinder while simultaneously enhancing the impact of pressure increase; an increase in pressure reduces the impact of an increase in ambient temperature on the heat flux in the cylinder. It offers a theoretical foundation for the safe application of large-volume liquid hydrogen cylinders installed in vehicles.

关键词

热通量 / 导热性 / 计算流体力学 / 液氢 / 大容积车载液氢瓶

Key words

heat flux / thermal conductivity / computational fluid dynamics / liquid hydrogen / large volume vehicle liquid hydrogen cylinder

引用本文

导出引用
孙小伟, 刘宇航, 李飞, 郝永梅, 管凌峰, 沈俊. 大容积车载液氢瓶储运过程中的导热性能数值模拟分析[J]. 太阳能学报. 2024, 45(12): 555-561 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1261
Sun Xiaowei, Liu Yuhang, Li Fei, Hao Yongmei, Guan Lingfeng, Shen Jun. SIMULATION STUDY ON THERMAL CONDUCTIVITY PERFORMANCE OF LARGE VOLUME VEHICLE LIQUID HYDROGEN CYLINDER DURING STORAGE AND TRANSPORTATION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 555-561 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1261
中图分类号: X933.4   

参考文献

[1] TANI K, HIMENO T, SAKUMA Y, et al.Pressure recovery during pressure reduction experiment with large-scale liquid hydrogen tank[J]. International journal of hydrogen energy, 2021, 46(57): 29583-29596.
[2] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 500-514.
[3] CIRRONE D, MAKAROV D, MOLKOV V.Rethinking “BLEVE explosion” after liquid hydrogen storage tank rupture in a fire[J]. International journal of hydrogen energy, 2023, 48(23): 8716-8730.
[4] JOSEPH J, AGRAWAL G, AGARWAL D K, et al.Effect of insulation thickness on pressure evolution and thermal stratification in a cryogenic tank[J]. Applied thermal engineering, 2017, 111: 1629-1639.
[5] BORYAEV A A, CHERNYAEV I O, ZHU Y Q.Heat and mass transfer and hydrodynamics in cryogenic hydrogen fuel systems[J]. Fuel, 2022, 321: 124004.
[6] KANG H, KIM S Y.Thermal design analysis of a 1 L cryogenic liquid hydrogen tank for an unmanned aerial vehicle[J]. International journal of hydrogen energy, 2014, 39(35): 20009-20016.
[7] LI J C, LIANG G Z.Simulation of mass and heat transfer in liquid hydrogen tanks during pressurizing[J]. Chinese journal of aeronautics, 2019, 32(9): 2068-2084.
[8] WANG H R, WANG B, LI R Z, et al.Theoretical investigation on heat leakage distribution between vapor and liquid in liquid hydrogen tanks[J]. International journal of hydrogen energy, 2023, 48(45): 17187-17201.
[9] 朱华强, 冯永康, 蔡延彬, 等. 低温气瓶气相区温度分布研究[J]. 中国科技论文, 2021, 16(1): 97-103, 111.
ZHU H Q, FENG Y K, CAI Y B, et al.Study on temperature distribution in the gas phase of cryogenic vessels[J]. China sciencepaper, 2021, 16(1): 97-103, 111.
[10] 王朝, 邹宏伟, 陈甲楠, 等. 液氮、液氢加注系统数值仿真与试验研究[J]. 太阳能学报, 2022, 43(11): 460-465.
WANG C, ZOU H W, CHEN J N, et al.Numerical simulation and experimental study of liquid nitrogen and liquid hydrogen filling system[J]. Acta energiae solaris sinica, 2022, 43(11): 460-465.
[11] 赵高逸, 陈叔平, 谢高峰, 等. 晃动对液氢贮罐传热和压降的影响研究[J]. 低温与超导, 2020, 48(12): 30-36.
ZHAO G Y, CHEN S P, XIE G F, et al.Effect of sloshing on heat transfer and pressure drop of non-isothermal liquid hydrogen tank[J]. Cryogenics & superconductivity, 2020, 48(12): 30-36.

基金

江苏省碳达峰碳中和科技创新专项资金(BE2022001); 江苏省研究生科研与实践创新计划项目(KYCX23_3161)

PDF(2031 KB)

Accesses

Citation

Detail

段落导航
相关文章

/