基于霜种子法制备含甲烷水合物砂土的力学特性

唐昊, 颜荣涛, 于鸿飞, 吴远成, 杨德欢

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 675-684.

PDF(2174 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2174 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 675-684. DOI: 10.19912/j.0254-0096.tynxb.2023-1270

基于霜种子法制备含甲烷水合物砂土的力学特性

  • 唐昊1, 颜荣涛1, 于鸿飞1, 吴远成1, 杨德欢2
作者信息 +

MECHANICAL PROPERTIES OF METHANE HYDRATE-BEARING SAND PREPARED BY FROST SEEDING METHOD

  • Tang Hao1, Yan Rongtao1, Yu Hongfei1, Wu Yuancheng1, Yang Dehuan2
Author information +
文章历史 +

摘要

实验室制备具有典型代表特征的均匀试样是研究天然气水合物沉积物力学特性的前提条件。通过含甲烷水合物砂土(HBS)的三轴剪切试验,首先对比富气法和霜种子法制得HBS试样的力学特性区别,并分析其差异机制;同时,系统性研究霜种子法制备的HBS试样变形和强度特性受水合物饱和度的影响规律。试验结果表明:霜种子法制得试样强度高于富气法制备的试样,主要原因在于富气法制得HBS试样中水合物分布相对不均匀;霜种子法制得试样强度和割线模量随水合物饱和度上升而提高,其内摩擦角基本不受水合物饱和度影响,但黏聚力与水合物饱和度呈现明显的正相关影响趋势。

Abstract

It is a prerequisite to study the mechanical properties of natural gas hydrate-bearing sediments to prepare uniform samples with typical characteristics in the laboratory. In this paper, the mechanical properties of hydrate-bearing sand(HBS) samples prepared by excess gas method and frost seeding method were compared by triaxial shear test of methane HBS, and the mechanism of the difference was analyzed. At the same time, the influence of hydrate saturation on the deformation and strength characteristics of HBS samples prepared by frost seed method was systematically studied. The results show that the strength of samples prepared by frost seeding method is higher than that prepared by excess gas method, primarily due to the relatively uneven distribution of hydrate in the HBS samples prepared by excess gas method. The strength and secant modulus of the samples prepared by frost seeding method increased with the increase of hydrate saturation, and the internal friction Angle of the samples was basically not affected by hydrate saturation, but the cohesion and hydrate saturation showed an obvious positive correlation trend.

关键词

天然气水合物 / 三轴试验 / 力学特性 / 霜种子法 / 富气法

Key words

natural gas hydrate / triaxial test / mechanical properties / frost seeding method / excess gas method

引用本文

导出引用
唐昊, 颜荣涛, 于鸿飞, 吴远成, 杨德欢. 基于霜种子法制备含甲烷水合物砂土的力学特性[J]. 太阳能学报. 2024, 45(12): 675-684 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1270
Tang Hao, Yan Rongtao, Yu Hongfei, Wu Yuancheng, Yang Dehuan. MECHANICAL PROPERTIES OF METHANE HYDRATE-BEARING SAND PREPARED BY FROST SEEDING METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 675-684 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1270
中图分类号: P744.4   

参考文献

[1] HYODO M, YONEDA J, YOSHIMOTO N, et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and foundations, 2013, 53(2): 299-314.
[2] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074.
ZHANG X H, WANG S Y, LI Q P, et al.Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and soil mechanics, 2010, 31(10): 3069-3074.
[3] 龚晔, 许天福, 袁益龙, 等. 高压旋喷灌浆法改造近井储层对海洋天然气水合物降压开采潜力影响研究[J]. 太阳能学报, 2022, 43(11): 1-8.
GONG Y, XU T F, YUAN Y L, et al.Study of gas production from marine hydrate-bearing sediments through near-well reservoir reconstruction by high-pressure jet grouting combined with depressurization[J]. Acta energiae solaris sinica, 2022, 43(11): 1-8.
[4] GOTO S, MATSUBAYASHI O, NAGAKUBO S.Simulation of gas hydrate dissociation caused by repeated tectonic uplift events[J]. Journal of geophysical research: solid earth, 2016, 121(5): 3200-3219.
[5] 徐佳琳, 黄玲惠, 许成顺, 等. 含水合物沉积物力学-声学联合试验设备的开发和初步应用[J]. 太阳能学报, 2023, 44(1): 392-401.
XU J L, HUANG L H, XU C S, et al.Development and preliminary application of mechanical-acoustic test system for hydrate-bearing sediments[J]. Acta energiae solaris sinica, 2023, 44(1): 392-401.
[6] 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1): 2-8.
WU S G, WANG J L.On the China's successful gas production test from marine gas hydrate reservoirs[J]. Chinese science bulletin, 2018, 63(1): 2-8.
[7] 杨德欢. 海底含水合物沉积物的相平衡条件及物理力学特性[D]. 桂林: 桂林理工大学, 2022.
YANG D H.Phase equilibrium conditions and physical and mechanical properties of hydrate-bearing sediments on the seabed[D]. Guilin: Guilin University of Technology, 2022.
[8] LIU Z C, WEI H Z, PENG L, et al.An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test[J]. Journal of petroleum science and engineering, 2017, 149: 56-64.
[9] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116-132.
WEI C F, YAN R T, TIAN H H, et al.Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural gas industry, 2020, 40(8): 116-132.
[10] LE T X, AIMEDIEU P, BORNERT M, et al.Effect of temperature cycle on mechanical properties of methane hydrate-bearing sediment[J]. Soils and foundations, 2019, 59(4): 814-827.
[11] SONG Y C, LUO T T, MADHUSUDHAN B N, et al.Strength behaviors of CH4 hydrate-bearing silty sediments during thermal decomposition[J]. Journal of natural gas science and engineering, 2019, 72: 103031.
[12] MASUI A, HANEDA H, OGATA Y, et al.Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//Proceedings of the 5th International Conferencce on Gas Hydrate. Norway, 2005: 657-663.
[13] IWAI H, KONISHI Y, SAIMYOU K, et al.Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation[J]. Soils and foundations, 2018, 58(5): 1113-1132.
[14] WANG X C, SUN Y H, PENG S Y, et al.Effect of pore water on the depressurization of gas hydrate in clayey silt sediments[J]. Journal of natural gas science and engineering, 2022, 108: 104836.
[15] PRIEST J A, HAYLEY J L.Strength of laboratory synthesized hydrate-bearing sands and their relationship to natural hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2019, 124(12): 12556-12575.
[16] 杨德欢, 颜梦秋, 陆地, 等. 含天然气水合物土水-力特性联合测试装置及应用[J]. 工程地质学报, 2021, 29(6): 1722-1732.
YANG D H, YAN M Q, LU D, et al.Introduction and application of hydro-mechanical united experiment apparatus for hydrate-bearing sediments[J]. Journal of engineering geology, 2021, 29(6): 1722-1732.
[17] LEE S, HENTHOM K H.Particle technology and applications[M]. Boca Raton: CRC Press, 2012: 5-20.
[18] GHIASSIAN H, GROZIC J L H. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and petroleum geology, 2013, 43: 310-319.
[19] YAN R T, YU H F, YANG D H, et al.Shear strength and pore pressure characteristics of methane hydrate-bearing soil under undrained condition[J]. International journal of hydrogen energy, 2023, 48(33): 12240-12256.
[20] ZHOU J Z, YANG Z J, WEI C F, et al.Mechanical behavior of hydrate-bearing sands with fine particles under isotropic and triaxial compression[J]. Journal of natural gas science and engineering, 2021, 92: 103991.
[21] 李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640.
LI Y H, SONG Y C, YU F, et al.Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum exploration and development, 2011, 38(5): 637-640.
[22] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1-24.
NING F L, LIANG J Q, WU N Y, et al.Reservoir characteristics of natural gas hydrates in China[J]. Natural gas industry, 2020, 40(8): 1-24.
[23] LI L, LEI X H, ZHANG X, et al.Heat flow derived from BSR and its implications for gas hydrate stability zone in Shenhu Area of northern South China Sea[J]. Marine geophysical research, 2012, 33(1): 77-87.
[24] 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680.
ZHANG W, LIANG J Q, LU J A, et al.Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum exploration and development, 2017, 44(5): 670-680.
[25] CHOI J H, DAI S, LIN J S, et al.Multistage triaxial tests on laboratory-formed methane hydrate-bearing sediments[J]. Journal of geophysical research (solid earth), 2018, 123(5): 3347-3357.
[26] YONEDA J, OSHIMA M, KIDA M, et al.Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and petroleum geology, 2019, 108: 524-536.
[27] ZHANG Y Y, ZHAO Y C, LEI X, et al.Quantitatively study on methane hydrate formation/decomposition process in hydrate-bearing sediments using low-field MRI[J]. Fuel, 2020, 262: 116555.
[28] 赵成刚. 土力学原理[M]. 2版北京: 清华大学出版社, 2017: 189-230.
ZHAO C G.Principles of soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 189-230.
[29] 颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4115-4122.
YAN R T, WEI C F, FU X H, et al.Influence of occurrence mode of hydrate on mechanical behaviour of hydrate-bearing soils[J]. Chinese journal of rock mechanics and engineering, 2013, 32(Sup2): 4115-4122.
[30] 王哲, 李栋梁, 吴起, 等. 石英砂粒径对水合物沉积物力学性质的影响[J]. 实验力学, 2020, 35(2): 251-258.
WANG Z, LI D L, WU Q, et al.Effects of quartz sand particle sizes on mechanical properties of hydrate sediments[J]. Journal of experimental mechanics, 2020, 35(2): 251-258.
[31] ZHANG X H, LUO D S, LU X B, et al.Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation[J]. Acta mechanica sinica, 2018, 34(2): 266-274.
[32] YUN T S, SANTAMARINA J C, RUPPEL C.Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of geophysical research: solid earth, 2007, 112(B04106): 1-13.
[33] EBINUMA T, KAMATA Y, MINAGAWA H, et al.Mechanical properties of sandy sediment containing methane hydrate[C]//Proceedings of the 5th international Conference on Gas hydrates. Trondheim. Norway, 2005: 958-961.
[34] LEI L, SEOL Y.Pore-scale investigation of methane hydrate-bearing sediments under triaxial condition[J]. Geophysical research letters, 2020, 47(5): e86448.
[35] DONG L, LI Y L, LIAO H L, et al.Strength estimation for hydrate-bearing sediments based on triaxial shearing tests[J]. Journal of petroleum science and engineering, 2020, 184: 106478.
[36] 赵亚鹏, 刘乐乐, 孔亮, 等. 含天然气水合物土微观力学特性研究进展[J]. 力学学报, 2021, 53(8): 2119-2140.
ZHAO Y P, LIU L L, KONG L, et al.Advances in micromechanical properties of hydrate-bearing soils[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(8): 2119-2140.

基金

国家自然科学基金(12262009); 广西青年科学基金(2024GXNSFBA010387); 国家自然科学基金(52378333)

PDF(2174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/