基于温差发电两级修正的沼气发电机组废热利用方法与模型构建

李若兰, 魏征, 刘畅, 高立艾, 贾宇琛, 温鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 434-443.

PDF(1996 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1996 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 434-443. DOI: 10.19912/j.0254-0096.tynxb.2023-1276

基于温差发电两级修正的沼气发电机组废热利用方法与模型构建

  • 李若兰1, 魏征2, 刘畅2, 高立艾1,3, 贾宇琛3,4, 温鹏1,3
作者信息 +

WASTE HEAT UTILIZATION METHOD AND MODEL CONSTRUCTION OF BIOGAS GENERATOR SETS BASED ON TWO-STAGE CORRECTION OF THERMOELECTRIC POWER GENERATION

  • Li Ruolan1, Wei Zheng2, Liu Chang2, Gao Liai1,3, Jia Yuchen3,4, Wen Peng1,3
Author information +
文章历史 +

摘要

为充分利用沼气能源,提高沼气发电能源利用率,提出利用温差发电片对沼气发电机组废热进行回收,利用Matlab/Simulink构建基于温差发电两级修正的沼气发电机组废热回收利用仿真模型,并通过实测数据对模型进行验证。结果表明,两级修正的温差发电模型平均绝对百分比误差(MAPE)为0.045%,二次修正相比于一次修正MAPE降低0.167%;加入温差发电装置后沼气发电系统能源利用率可提升8.59个百分点,废热利用效率可提升15.53个百分点。

Abstract

To make full use of biogas energy and improve the energy utilization rate of biogas power generation, this paper proposes to use thermoelectric generator to recover the waste heat of biogas generator sets. The simulation model of waste heat recovery and utilization of biogas generator sets based on two-stage correction of thermoelectric power generation is constructed by Matlab/Simulink, and the model is verified by measured data. The results show that the mean absolute percentage error(MAPE) of the two-stage modified thermoelectric generation model is 0.045%, and the second correction is 0.167% lower than the first correction mean absolute percentage error(MAPE). After adding the thermoelectric generator, the energy utilization rate of the biogas power generation system can be increased by 8.59 percentages poimt, and the waste heat utilization efficiency can be increased by 15.53 percentages poimt.

关键词

沼气 / 废热 / 能源利用 / 温差转换 / Simulink / 两级修正

Key words

biogas / waste heat / energy utilization / thermoelectric power conversion / Simulink / two-stage correction

引用本文

导出引用
李若兰, 魏征, 刘畅, 高立艾, 贾宇琛, 温鹏. 基于温差发电两级修正的沼气发电机组废热利用方法与模型构建[J]. 太阳能学报. 2024, 45(12): 434-443 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1276
Li Ruolan, Wei Zheng, Liu Chang, Gao Liai, Jia Yuchen, Wen Peng. WASTE HEAT UTILIZATION METHOD AND MODEL CONSTRUCTION OF BIOGAS GENERATOR SETS BASED ON TWO-STAGE CORRECTION OF THERMOELECTRIC POWER GENERATION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 434-443 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1276
中图分类号: TM617   

参考文献

[1] ZHOU Z Q, YIN X L, XU J, et al.The development situation of biomass gasification power generation in China[J]. Energy policy, 2012, 51: 52-57.
[2] 李金平, 曹鹏, 郭精韬, 等. 沼液回流对牛粪厌氧发酵工程影响[J]. 太阳能学报, 2021, 42(6): 469-475.
LI J P, CAO P, GUO J T, et al.Effect of reflux ratio of biogas slurry on anaerobic fermentation of cow manure[J]. Acta energiae solaris sinica, 2021, 42(6): 469-475.
[3] 中国国务院新闻办公室. 中国能源转型[R]. 北京:国务院新闻办公室, 2024.
THE STATE COUNCIL INFORMATION OFFICE.China's energy transformation[R]. Beijing: The state council information office, 2024.
[4] 李文哲. 生物质能源工程[M]. 北京: 中国农业出版社, 2013.
LI W Z.Biomass energy engineering[M]. Beijing: China Agriculture Press, 2013.
[5] PATIL D S, ARAKERIMATH R R, WALKE P V.Thermoelectric materials and heat exchangers for power generation: a review[J]. Renewable and sustainable energy reviews, 2018, 95: 1-22.
[6] 杨珍帅, 王焕然, 李瑞雄, 等. 内燃机增压-压缩空气储能冷热电联产系统[J]. 储能科学与技术, 2020, 9(6): 1917-1925.
YANG Z S, WANG H R, LI R X, et al.A novel combined cooling heating and power system with coupled compressed air energy storage and supercharged diesel engine[J]. Energy storage science and technology, 2020, 9(6): 1917-1925.
[7] MANZELA A, HANRIOT S M, CABEZAS-GÓMEZ L, et al. Using engine exhaust gas as energy source for an absorption refrigeration system[J]. Applied energy, 2010, 87(4): 1141-1148.
[8] LI J, YANG Z, HU S Z, et al.Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids[J]. Energy, 2020, 206: 118217.
[9] 王军, 张超震, 董彦, 等. 温差发电模型的热电性能数值计算和分析[J]. 太阳能学报, 2019, 40(1): 44-50.
WANG J, ZHANG C Z, DONG Y, et al.Numerical caculation and analysis on properties of thermoelectric generation model[J]. Acta energiae solaris sinica, 2019, 40(1): 44-50.
[10] 李欣然, 王立舒, 李闯, 等. 光伏温差界面热耦合特性及混合发电效率[J]. 农业工程学报, 2021, 37(1): 233-240.
LI X R, WANG L S, LI C, et al.Thermal coupling characteristics of photovoltaic-thermoelectric interface and efficiency of hybrid power generation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 233-240.
[11] 蒋小强, 谢爱霞, 丁锦宏, 等. 汽车尾气的余热发电及有效利用[J]. 电源技术, 2016, 40(6): 1280-1283, 1306.
JIANG X Q, XIE A X, DING J H, et al.Waste heat power generation and efficient use of utomobile exhaust[J]. Chinese journal of power sources, 2016, 40(6): 1280-1283, 1306.
[12] GEORGOPOULOU C A, DIMOPOULOS G G, KAKALIS N M P. A modular dynamic mathematical model of thermoelectric elements for marine applications[J]. Energy, 2016, 94: 13-28.
[13] 欧强. 一种采用热开关的温差发电系统的仿真与实验研究[D]. 重庆: 重庆大学, 2013.
OU Q.Simulation and experimental study on a thermoelectric power generation system with thermal switch[D]. Chongqing: Chongqing University, 2013.
[14] 刘闻远, 辛娅, 王殿龙, 等. 生物炭和乙醇对油菜秸秆沼气发酵特性的影响[J]. 太阳能学报, 2023, 44(3): 277-283.
LIU W Y, XIN Y, WANG D L, et al.Effect of biocharand ethanol on methane production in anaerobic digestion of rape straw[J]. Acta energiae solaris sinica, 2023, 44(3): 277-283.
[15] 于晓凤, 周恩泽, 丁雪峰, 等. 基于TRNSYS的污水厂沼气热电联产系统优化分析和性能评价[J]. 太阳能学报, 2021, 42(10): 324-330.
YU X F, ZHOU E Z, DING X F, et al.Optimization analysis and performance evaluation of biogas cogeneration system of sewage treatment plant based on TRNSYS[J]. Acta energiae solaris sinica, 2021, 42(10): 324-330.
[16] 苟小龙, 平会峰, 许昊煜, 等. 一种带有热开关的新型温差发电系统[J]. 太阳能学报, 2016, 37(10): 2653-2659.
GOU X L, PING H F, XU H Y, et al.Thermoelectric generation system with thermal switch[J]. Acta energiae solaris sinica, 2016, 37(10): 2653-2659.
[17] VERMA V, KANE A, SINGH B.Complementary performance enhancement of PV energy system through thermoelectric generation[J]. Renewable and sustainable energy reviews, 2016, 58: 1017-1026.
[18] ARORA R, KAUSHIK S C, ARORA R.Thermodynamic modeling and multi-objective optimization of two stage thermoelectric generator in electrically series and parallel configuration[J]. Applied thermal engineering, 2016, 103: 1312-1323.
[19] SUN D F, SHEN L M, YAO Y, et al.The real-time study of solar thermoelectric generator[J]. Applied thermal engineering, 2017, 119: 347-359.
[20] 张学学. 热工基础[M]. 2版. 北京: 高等教育出版社, 2006.
ZHANG X X.Thermal engineering foundation[M]. 2nd ed. Beijing: Higher Education Press, 2006.
[21] 任泽霈, 蔡睿贤. 热工手册[M]. 北京: 机械工业出版社, 2002.
REN Z P, CAI R X.Thermal manual[M]. Beijing: China Machine Press, 2002.
[22] 尹梦聪. 冷凝热回收系统的COP及效益研究[D]. 石家庄: 河北科技大学, 2022.
YIN M C.Study on COP and benefit of condensation heat recovery system[D]. Shijiazhuang: Hebei University of Science and Technology, 2022.

基金

河北省教育厅科学技术研究项目(KY2021020; KY2021118)

PDF(1996 KB)

Accesses

Citation

Detail

段落导航
相关文章

/