基于线性自抗扰的风电机组MPPT与扭振协同控制

王浩东, 田德, 李新凯, 劳文欣, 苏怡, 王永

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 250-257.

PDF(1945 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1945 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 250-257. DOI: 10.19912/j.0254-0096.tynxb.2023-1291

基于线性自抗扰的风电机组MPPT与扭振协同控制

  • 王浩东1, 田德1, 李新凯2, 劳文欣2, 苏怡1, 王永1
作者信息 +

COOPERATIVE CONTROL OF WIND TURBINE MPPT AND TORSIONAL VIBRATION BASED ON LINEAR ACTIVE DISTURBANCE REJECTION

  • Wang Haodong1, Tian De1, Li Xinkai2, Lao Wenxin2, Su Yi1, Wang Yong1
Author information +
文章历史 +

摘要

针对最大功率点跟踪(MPPT)与扭振控制回路之间的耦合及运行过程扰动抑制问题,提出一种基于线性自抗扰的风电机组MPPT与扭振协同控制方法。设计未知输入观测器并结合牛顿-拉夫逊算法为叶尖速比法MPPT估计有效风速,设计卡尔曼滤波器为扭振控制回路估计传动链扭转速度。在FAST中开展仿真研究。仿真案例表明:相较于传统方法,所提出方法发电量提升1.58%,引入扭振控制器后,扭转速度和扭角的标准差分别降低31.06%和0.50%,提高MPPT性能的同时抑制传动链扭振。

Abstract

Aiming at the problem of coupling between MPPT and torsional vibration control loop and disturbance suppression in the operation process, a cooperative control method of MPPT and torsional vibration of wind turbine based on linear active disturbance rejection is proposed. The unknown input observer is designed and combined with the Newton-Raphson algorithm to estimate the effective wind speed for the tip speed ratio method MPPT, and the Kalman filter is designed to estimate the torsional speed of the drivetrain for the torsional vibration control loop. The simulation research is carried out based on the 5 MW wind turbine model in FAST. The simulation case shows that compared with the traditional method, the power generation of the proposed method is increased by 1.58%. After the introduction of the torsional vibration controller, the standard deviation of the torsional speed and torsion angle is reduced by 31.06% and 0.50%, respectively, which improves the MPPT performance and suppresses the drivetrain torsional vibration.

关键词

风电机组 / 最大功率跟踪 / 转矩控制 / 扭振控制 / 有效风速估计 / 线性自抗扰控制

Key words

wind turbines / maximum power point trackers / torque control / torsional vibration control / effective wind speed estimation / linear active disturbance rejection control

引用本文

导出引用
王浩东, 田德, 李新凯, 劳文欣, 苏怡, 王永. 基于线性自抗扰的风电机组MPPT与扭振协同控制[J]. 太阳能学报. 2024, 45(12): 250-257 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1291
Wang Haodong, Tian De, Li Xinkai, Lao Wenxin, Su Yi, Wang Yong. COOPERATIVE CONTROL OF WIND TURBINE MPPT AND TORSIONAL VIBRATION BASED ON LINEAR ACTIVE DISTURBANCE REJECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 250-257 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1291
中图分类号: TM614   

参考文献

[1] PAN C T, JUAN Y L.A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system[J]. IEEE transactions on energy conversion, 2010, 25(1): 207-216.
[2] 周连俊, 李群, 殷明慧, 等. 面向风电机组最大功率点跟踪的转矩曲线增益动态优化[J]. 电工技术学报, 2023, 38(13): 3447-3458.
ZHOU L J, LI Q, YIN M H, et al.Torque curve gain dynamic optimization for maximum power point tracking of wind turbines[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3447-3458.
[3] CHEN J W, CHEN J, GONG C Y.On optimizing the transient load of variable-speed wind energy conversion system during the MPP tracking process[J]. IEEE transactions on industrial electronics, 2014, 61(9): 4698-4706.
[4] YENDURI K, SENSARMA P.Maximum power point tracking of variable speed wind turbines with flexible shaft[J]. IEEE transactions on sustainable energy, 2016, 7(3): 956-965.
[5] UDDIN M N, AMIN I K.Adaptive step size based hill-climb search algorithm for MPPT control of DFIG-WECS with reduced power fluctuation and improved tracking performance[J]. Electric power components and systems, 2018, 46(19/20): 2203-2214.
[6] CHEN H, SUN Y, CAI Y M, et al.Improved torque compensation control based-maximum power point tracking strategy for large scale floating offshore wind turbines[J]. Ocean engineering, 2023, 273: 113974.
[7] 夏亚平, 刘德, 李芮宇, 等. 低风速风力机最大风能追踪的互补滑模控制[J]. 控制理论与应用, 2020, 37(1): 129-136.
XIA Y P, LIU D, LI R Y, et al.Complementary sliding mode control for maximum wind energy tracking of low wind turbines[J]. Control theory & applications, 2020, 37(1): 129-136.
[8] 田德, 周臣凯, 唐世泽, 等. 基于自适应模型预测控制的大型风电机组MPPT方法[J]. 太阳能学报, 2023, 44(6): 501-508.
TIAN D, ZHOU C K, TANG S Z, et al.MPPT method for large wind turbines based on adaptive model predictive control[J]. Acta energiae solaris sinica, 2023, 44(6): 501-508.
[9] 贾锋, 符杨. 风电功率跟踪的渐进随动本质与无通信的风电场集中变频原理[J]. 中国电机工程学报, 2023, 43(15): 5877-5890.
JIA F, FU Y.The gradual follow-up essence of wind power tracking and the non-communication centralized power conversion principle for wind turbine cluster[J]. Proceedings of the CSEE, 2023, 43(15): 5877-5890.
[10] 杨文韬, 耿华, 肖帅, 等. 最大功率跟踪控制下大型风电机组的轴系扭振分析及抑制[J]. 清华大学学报(自然科学版), 2015, 55(11): 1171-1177.
YANG W T, GENG H, XIAO S, et al.Analysis and suppression for shaft torsional vibrations in large wind turbines with MPPT control[J]. Journal of Tsinghua University(science and technology), 2015, 55(11): 1171-1177.
[11] 金鑫, 钟翔, 谢双义, 等. 大型风力发电机转矩LQR控制及载荷优化[J]. 电力系统保护与控制, 2013, 41(6): 93-98.
JIN X, ZHONG X, XIE S Y, et al.Load reduction for large-scale wind turbine based on LQR torque control[J]. Power system protection and control, 2013, 41(6): 93-98.
[12] 邢作霞, 刘颖明, 郑琼林, 等. 基于阻尼滤波的大型风电机组柔性振动控制技术[J]. 太阳能学报, 2008, 29(11): 1425-1431.
XING Z X, LIU Y M, ZHENG Q L, et al.Flexible vibration control technology of large wind turbine based on damping filter[J]. Acta energiae solaris sinica, 2008, 29(11): 1425-1431.
[13] 叶杭冶. 风力发电机组监测与控制[M]. 2版. 北京: 机械工业出版社, 2019.
YE H Y.Wind generator's monitoring and control[M]. 2nd ed. Beijing: China Machine Press, 2019.
[14] AZIZI A, NOURISOLA H, SHOJA-MAJIDABAD S.Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller[J]. Renewable energy, 2019, 135: 55-65.
[15] 庞辉庆, 邓英, 刘茜, 等. 基于卡尔曼滤波的风电机组传动链扭振控制[J]. 太阳能学报, 2020, 41(11): 293-299.
PANG H Q, DENG Y, LIU Q, et al.Torsional vibration control of wind turbine drive train based on Kalman filter[J]. Acta energiae solaris sinica, 2020, 41(11): 293-299.
[16] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.
HAN J Q.Auto-disturbances-rejection controller and its applications[J]. Control and decision, 1998, 13(1): 19-23.
[17] DENG X F, YANG J, SUN Y, et al.Sensorless effective wind speed estimation method based on unknown input disturbance observer and extreme learning machine[J]. Energy, 2019, 186: 115790.
[18] 李振营, 沈毅, 胡恒章. 具有未知输入干扰的观测器设计[J]. 航空学报, 2000, 21(5): 471-473.
LI Z Y, SHEN Y, HU H Z.Design of observers for system with unknown inputs[J]. Acta aeronautica et astronautica sinica, 2000, 21(5): 471-473.

基金

国家重点研发计划(SQ2020YFB150108)

PDF(1945 KB)

Accesses

Citation

Detail

段落导航
相关文章

/