基于开关分流电阻的锂电池SOH被动均衡方案

吴青峰, 杨凯义, 杨艺涛, 刘立群, 樊亚敏, 薄利明

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 520-527.

PDF(2240 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2240 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 520-527. DOI: 10.19912/j.0254-0096.tynxb.2023-1310

基于开关分流电阻的锂电池SOH被动均衡方案

  • 吴青峰1, 杨凯义1, 杨艺涛1, 刘立群1, 樊亚敏1, 薄利明2
作者信息 +

PASSIVE SOH BALANCING SCHEME FOR LITHIUM BATTERY BASED ON SWITCHING SHUNT RESISTANCE

  • Wu Qingfeng1, Yang Kaiyi1, Yang Yitao1, Liu Liqun1, Fan Yamin1, Bo Liming2
Author information +
文章历史 +

摘要

现有锂电池健康状态(SOH)被动均衡方案均聚焦锂电池荷电状态(SOC),尚未形成成熟的SOH均衡技术。针对此问题,提出一种基于分流电阻的锂电池组间的SOH被动均衡方案,分析SOH均衡原理,研究分流电阻阻值计算和接入切除法则,从而实现锂电池SOH均衡,使所有锂电池同时退役,节约维护成本。最后,利用Matlab仿真软件和实验平台进行仿真和实验验证,仿真和实验结果验证所提方案的有效性。

Abstract

The existing passive balancing schemes for the state of health (SOH) of lithium batteries focus on the state of charge (SOC) of lithium batteries, and mature SOH balancing technologies have not yet been formed. To address this issue,a passive SOH balancing scheme between lithium battery packs based on shunt resistance is proposed. The principle of SOH balancing is analyzed,and the calculation of shunt resistance value and the connection removal rule are studied. This achieves SOH balancing of the lithium batteries,enabling all lithium batteries to retire simultaneously and reducing maintenance costs. Finally,the effectiveness of the proposed scheme is validated through simulation and experimental verification using Matlab simulation software and an experimental platform.

关键词

电池组 / 开关电路 / 功率控制 / 被动均衡 / 健康状态 / 放电深度

Key words

battery pack / switching circuits / power control / passive balancing / state of health / depth of discharge

引用本文

导出引用
吴青峰, 杨凯义, 杨艺涛, 刘立群, 樊亚敏, 薄利明. 基于开关分流电阻的锂电池SOH被动均衡方案[J]. 太阳能学报. 2024, 45(12): 520-527 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1310
Wu Qingfeng, Yang Kaiyi, Yang Yitao, Liu Liqun, Fan Yamin, Bo Liming. PASSIVE SOH BALANCING SCHEME FOR LITHIUM BATTERY BASED ON SWITCHING SHUNT RESISTANCE[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 520-527 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1310
中图分类号: TM46   

参考文献

[1] LIANG Z P, DONG Z Y, LI C J, et al.A data-driven convex model for hybrid microgrid operation with bidirectional converters[J]. IEEE transactions on smart grid, 2023, 14(2): 1313-1316.
[2] FATHI-JOWZDANI A H, SADEGHKHANI I, MEHRIZI-SANI A. Islanding detection for DC microgrids based on episode of care severity index[J]. IEEE transactions on smart grid, 2022, 13(2): 954-961.
[3] 吴青峰, 褚晓林, 于少娟, 等. 基于改进型P-E下垂控制的低压交流微电网不同容量储能单元SOC均衡策略[J]. 太阳能学报, 2023, 44(4): 266-275.
WU Q F, CHU X L, YU S J, et al.SOC balancing strategy of low voltage ac microgrids with different capacities base on improved P-E droop control[J]. Acta energiae solaris sinica, 2023, 44(4): 266-275.
[4] 郭向伟, 韩素敏, 华显, 等. 基于电池健康状态的多目标自适应均衡控制策略研究[J]. 系统仿真学报, 2019, 31(9): 1883-1889.
GUO X W, HAN S M, HUA X, et al.Research on multi-objective adaptive equalization control strategy based on SOH[J]. Journal of system simulation, 2019, 31(9): 1883-1889.
[5] 吴青峰, 杨凯义, 于少娟, 等. 基于无通讯的微电网储能系统主动SOH协同控制方案[J]. 太阳能学报, 2023, 44(5): 40-47.
WU Q F, YANG K Y, YU S J, et al.Active SOH cooperative control scheme of microgrid energy storage systems based on no-communication[J]. Acta energiae solaris sinica, 2023, 44(5): 40-47.
[6] SHI Y, SMITH K, ZANE R G, et al.Life prediction of large lithium-ion battery packs with active and passive balancing[C]//2017 IEEE American Control Conference (ACC). Seattle, WA, USA, 2017: 4704-4709.
[7] CHOWDHURY S, BIN SHAHEED M N, SOZER Y. An integrated state of health (SOH) balancing method for lithium-ion battery cells[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA, 2019: 5759-5763.
[8] SERBANESCU M,IONESCU O, GEORGESCU I, et al.Studies for an optimal balancing system for Li ion batteries based on state of health assessment[C]//2016 International Semiconductor Conference(CAS). Sinaia, Romania, 2016: 213-216.
[9] 吴青峰, 智泽英, 于少娟, 等. 基于多代理的微电网分布式储能系统健康状态平衡方案[J]. 太阳能学报, 2022, 43(2): 104-112.
WU Q F, ZHI Z Y, YU S J, et al.Soh balancing scheme for distributed energy storage systems in microgrid based on multi-agent[J]. Acta energiae solaris sinica, 2022, 43(2): 104-112.
[10] MA Z, GAO F, GU X, et al.Multilayer SOH equalization scheme for MMC battery energy storage system[J]. IEEE transactions on power electronics, 2020, 35(12): 13514-13527.
[11] 薄利明, 郑惠萍, 张世锋,等. 锂电池健康状态均衡技术综述[J]. 电测与仪表, 2023, 60(4): 11-18.
BO L M, ZHENG H P, ZHANG S F, et al.Review on health state equalization technology for lithium batteries[J]. Electrical measurement & instrumentation, 2023, 60(4): 11-18.
[12] 王鹿军, 单恩泽. 基于动态式双阈值的锂电池组主被动均衡策略[J]. 电机与控制学报, 2022, 26(1): 126-136.
WANG L J, SHAN E Z.Active passive equalization strategy for lithium battery pack based on dynamic dual threshold[J]. Electric machines and control, 2022, 26(1): 126-136.
[13] NAGUIB M, KOLLMEYER P, EMADI A.Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review[J]. IEEE access, 2021, 9: 50570-50582.
[14] DALVI S, THALE S.Design of DSP controlled passive cell balancing network based battery management system for EV application[C]//2020 IEEE India Council International Subsections Conference (INDISCON). Visakhapatnam, India, 2020: 84-89.
[15] KARMAKAR S, BERA T K, BOHRE A K.A novel proportional integral controller based passive cell balancing for battery management system[C]//2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT). New Delhi, India, 2022: 1-5.
[16] LYU Z Q, GAO R J, CHEN L.Li-ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method[J]. IEEE transactions on power electronics, 2021, 36(6): 6228-6240.
[17] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119.
LI C R, XIAO F, FAN Y X, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119.
[18] GOUD J S, KALPANA R.An online method of estimating state of health of a Li-ion battery[J]. IEEE transactions on energy conversion, 2021, 36(1): 111-119.
[19] LI N, GAO F, HAO T Q, et al.SOH balancing control method for the MMC battery energy storage system[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6581-6591.
[20] 李楠, 高峰. 基于储能型模块化多电平系统的多时间尺度控制策略[J]. 电工技术学报, 2017, 32(17): 47-56.
LI N, GAO F.Multi-time scale operational principle for battery integrated modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 47-56.
[21] LUO W, LV J,SONG W J,et al.Study on passive balancing characteristics of serially connected lithium-ion battery string[C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Yangzhou, China, 2017: 489-495.
[22] DU X H, MENG J H,PENG J C, et al.Sensorless temperature estimation of lithium-ion battery based on broadband impedance measurements[J]. IEEE transactions on power electronics, 2022, 37(9): 10101-10105.

基金

山西省基础研究计划面上项目(202203021221153); 山西省研究生教育创新项目(2024KY659)

PDF(2240 KB)

Accesses

Citation

Detail

段落导航
相关文章

/