斜坡海床刚性单桩基础水平极限承载机理分析

冯春健, 刘锦昆, 陈同彦, 王腾, 吴宇旗

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 299-306.

PDF(2783 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2783 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 299-306. DOI: 10.19912/j.0254-0096.tynxb.2023-1312

斜坡海床刚性单桩基础水平极限承载机理分析

  • 冯春健1, 刘锦昆1, 陈同彦1, 王腾2, 吴宇旗3
作者信息 +

MECHANISM ANALYSIS OF HORIZONAL LIMIT BEARING OF RIGID MONOPILE ON SLOPE SEABED

  • Feng Chunjian1, Liu Jinkun1, Chen Tongyan1, Wang Teng2, Wu Yuqi3
Author information +
文章历史 +

摘要

利用三维极限分析软件Optum G3,探究斜坡海床上刚性单桩基础水平承载失稳机理,分析单桩基础极限承载力随基础长径比、桩-土界面摩擦系数、土体强度、斜坡坡度和荷载加载方向的变化规律。研究发现,当单桩基础长径比较小时,破坏模式主要包括近泥面处的破坏楔体和底部的球型破坏;随着基础长径比的增加,楔体和球型破坏模式之间出现全流动破坏模式,破坏模式为:楔体-全流动-球型破坏模式;随着长径比进一步的增加,在球型破坏底部形成另外一个全流动破坏模式,破坏模式由上到下依次为:楔体-全流动-球型-全流动破坏模式。水平承载力系数Np随着基础长径比的增加先减小后增大,最后趋于稳定;随着基础桩-土界面摩擦系数的增加逐渐增大;随着土体强度梯度的增加逐渐减小;随着荷载加载方向的增大而增大;双侧破坏模式对应承载力系数比单侧破坏模式对应的承载力系数,按照单侧破坏模式进行承载力设计更加安全。

Abstract

The failure mechanism of horizontally loaded rigid monopile on slope seabed is investigated by using 3-D limit analysis software Optum G3. The failure mechanism and ultimate bearing capacity of monopile with various aspect ratios, pile-soil interface friction coefficient, soil strength and slope angles are analyzed. It is found that when the aspect ratio of monopile is small, the failure modes mainly include wedge failure at shallow seabed and spherical failure in deep soil. With the increase of aspect ratio of the monopile, the full flow failure mode appears between wedge failure and spherical failure. With the further increase of aspect ratio, another full-flow failure mode is formed below the spherical failure mode. The corresponding horizontal bearing capacity coefficient (Np) firstly decreases and then increases with the increase of aspect ratio of monopile, and finally keeps constant. Furthermore, the factor Np increases with the increase of friction coefficient and loading angle, but decreases with the increase of soil strength gradient and slope angle. Additionally, the factor Np of the single-sided failure mode is smaller than that of two-sided failure mode, indicating that it is safer to design the ultimate bearing capacity of the monopile according to the single-sided failure mode.

关键词

海上风电 / 承载力 / 数值分析 / 斜坡海床 / 单桩基础

Key words

offshore wind power / bearing capacity / numerical analysis / slope seabed / monopile

引用本文

导出引用
冯春健, 刘锦昆, 陈同彦, 王腾, 吴宇旗. 斜坡海床刚性单桩基础水平极限承载机理分析[J]. 太阳能学报. 2024, 45(12): 299-306 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1312
Feng Chunjian, Liu Jinkun, Chen Tongyan, Wang Teng, Wu Yuqi. MECHANISM ANALYSIS OF HORIZONAL LIMIT BEARING OF RIGID MONOPILE ON SLOPE SEABED[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 299-306 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1312
中图分类号: P751   

参考文献

[1] 李大勇, 黄凌昰, 吴宇旗, 等. 海上风电裙式吸力基础水平变幅非对称循环承载特性[J]. 太阳能学报, 2023,44(10): 391-399.
LI D Y,HUANG L X,WU Y Q, et al.Bearing behaviors of modified suction caisson under horizontal variable amplitude and asymmetrical cyclic loads for offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(10):391-399.
[2] 任彦忠, 韩中合, 汤旅军. 复杂条件下近海风电机组单桩基础水平变形性状分析研究[J]. 太阳能学报, 2023,44(10): 376-383.
REN Y Z,HAN Z H,TANG L J.Analysis on lateral deformation behavior of monopile foundation of offshore wind turbine under complex conditions[J]. Acta energiae solaris sinica, 2023, 44(10): 376-383.
[3] 李灿, 张日向, 姜萌. 近海风电大直径钢管桩基础水平承载力的有限元研究[J]. 中国水运(下半月), 2011, 11(12): 227-229, 231.
LI C,ZHANG R X, JIANG M.Finite element study on horizontal bearing capacity of electric large diameter steel pipe pile foundation near sea breeze[J]. China water transport, 2011, 11(12): 227-229, 231.
[4] 龚维明, 霍少磊, 杨超, 等. 海上风机大直径钢管桩基础水平承载特性试验研究[J]. 水利学报, 2015, 46(S1): 34-39.
GONG W M, HUO S L, YANG C, et al.Experimental study on horizontal bearing capacity of large diameter steel pipe pile for offshore wind farm[J]. Journal of hydraulic engineering, 2015, 46(S1): 34-39.
[5] 毛金锐. 外海超大型钢管桩沉桩稳桩平台设计与应用[J]. 铁道建筑技术, 2021(6): 85-89.
MAO J R.Design and application of pile stabilization platform for pile sinking of super-large steel pipe piles in the open sea[J]. Railway construction technology, 2021(6): 85-89.
[6] 王宇楠. 海上风电大直径植入式嵌岩钢管单桩结构加强方案分析[J]. 水利科技, 2021(2): 62-65.
WANG Y N.Analysis on strengthening scheme of large diameter embedded steel pipe single pile structure for offshore wind power[J]. Hydraulic science and technology,2021(2): 62-65.
[7] HUNG L C,KIM S R.Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay[J]. Ocean engineering, 2012, 52: 75-82.
[8] GOURVENEC S.Effect of embedment on the undrained capacity of shallow foundations under general loading[J]. Géotechnique, 2008, 58(3): 177-185.
[9] GOURVENEC S, BARNETT S.Undrained failure envelope for skirted foundations under general loading[J]. Géotechnique, 2011, 61(3): 263-270.
[10] GOURVENEC S.Failure envelopes for offshore shallow foundations under general loading[J]. Géotechnique,2007, 57(9): 715-728.
[11] YUN G, BRANSBY M F.The horizontal-moment capacity of embedded foundations in undrained soil[J]. Canadian geotechnical journal, 2007, 44(4): 409-424.
[12] SUPACHAWAROTE C, RANDOLPH M, GOURVENEC S.Inclined pull-out capacity of suction caissons[J]. Proceedings of the international offshore and polar engineering conference, 2004: 500-506.
[13] KAY S, PALIX E.Caisson capacity in clay: VHM resistance envelope-Part 2: VHM envelope equation and design procedures[M]//Frontiers in Offshore Geotechnics II. Boca Raton: CRC Press, 2010: 759-764.
[14] 范庆来, 赵海涛, 郑静, 等. 非共面复合加载条件下桶形基础稳定性研究[J]. 岩土力学, 2013, 34(12): 3641-3645.
FAN Q L, ZHAO H T, ZHENG J, et al.Stability of bucket foundations under non-coplanar combined loading[J]. Rock and soil mechanics, 2013, 34(12): 3641-3645.
[15] 武科, 马明月, 范庆来, 等. 软黏土地基上吸力式桶形基础的扭剪承载力分析[J]. 交通科学与工程, 2010, 26(4): 51-54.
WU K,MA M Y,FAN Q L, et al.Analysis of torsional resistance of suction bucket foundation[J]. Journal of transport science and engineering, 2010, 26(4): 51-54.
[16] 龚先兵, 杨明辉, 赵明华, 等. 山区高陡横坡段桥梁桩基承载机理模型试验[J]. 中国公路学报, 2013, 26(2):56-62.
GONG X B,YANG, M H,ZHAO M H, et al.Load-bearing mechanism model test for bridge pile foundation in high-steep transverse slope[J]. China journal of highway and transport, 2013, 26(2): 56-62.
[17] 张建伟, 韩一, 李荣翔, 等. 组合荷载作用下斜坡上桩基础水平承载特性研究[J]. 建筑结构, 2020, 50(13): 128-133.
ZHANG J W,HAN Y, LI R X, et al.Study on horizontal bearing characteristics of pile foundation on slope under combined load[J]. Building structure, 2020, 50(13): 128-133.
[18] 蒋洋, 王晓谋, 郭建坤. 条形基础下临坡地基极限承载力影响因素数值模拟分析[J]. 中国科技论文, 2017, 12(7): 779-786.
JIANG Y, WANG X M, GUO J K.Numerical simulation of factors affecting the ultimate bearing capacity for strip foundations adjacent to slopes[J]. China sciencepaper,2017, 12(7): 779-786.
[19] 严远忠, 张琪, 叶冠林, 等. 沉垫基础在水平和斜坡黏土海床上的竖向承载特性研究[J]. 上海交通大学学报,2023, 57(6): 700-708.
YAN Y Z, ZHANG Q, YE G L, et al.Vertical bearing characteristics of mat foundation on horizontal and sloping clay seabed[J]. Journal of Shanghai Jiao Tong University,2023, 57(6): 700-708.
[20] CHAKRABORTY D, KUMAR J.Bearing capacity of foundations on slopes[J]. Geomechanics and geoengineering, 2013, 8(4): 274-285.

基金

中国博士后科学基金(2023M733881); 国家自然科学基金(52078483)

PDF(2783 KB)

Accesses

Citation

Detail

段落导航
相关文章

/