基于RBF-PID和敏感变量滑模趋近律的PMSG恒功率控制

陈德海, 陈志文, 王海峰, 李明

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 307-315.

PDF(2424 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2424 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 307-315. DOI: 10.19912/j.0254-0096.tynxb.2023-1315

基于RBF-PID和敏感变量滑模趋近律的PMSG恒功率控制

  • 陈德海1,2, 陈志文1, 王海峰2, 李明1
作者信息 +

PMSG CONSTANT POWER CONTROL BASED ON RBF-PID AND SENSITIVE VARIABLE SLIDING MODE REACHING LAW

  • Chen Dehai1,2, Chen Zhiwen1, Wang Haifeng2, Li Ming1
Author information +
文章历史 +

摘要

针对海上直驱永磁风力发电机在风速大于额定风速下输出功率不稳定、影响电力质量的问题,提出一种RBF神经网络实时在线调整PID参数的变桨距控制策略,利用神经网络的自学习能力让内部参数不断优化,使系统更适应非线性和时变性。为进一步提高桨距角变化响应速度和输出功率的稳定性,设计一种敏感变量指数趋近律滑模控制器嵌入到发电机机侧速度环中,敏感变量可提高系统的收敛速度和抗抖振能力。在Matlab/Simulink上搭建直驱式永磁风力发电机的各部分仿真模块并进行对比实验,结果表明,基于RBF-PID和敏感变量滑模趋近律的变桨控制策略相比于改进前,桨距角变化响应更迅速,输出功率更稳定且震荡率只有0.4%,达到预期控制效果。

Abstract

A variable pitch control strategy based on RBF neural network for real-time online adjustment of PID parameters is proposed to address the issue of unstable output power and impact on power quality of offshore direct drive permanent magnet wind turbines when wind speed exceeds rated wind speed. The self-learning ability of the neural network is utilized to continuously optimize internal parameters, making the system more adaptable to nonlinearity and time-varying. In order to further improve the response speed of pitch angle change and the stability of output power, a sensitive variable exponential reaching law sliding mode controller is designed and embedded into the generator side speed loop. The sensitive variable can improve the Rate of convergence and anti chattering ability of the system. Build simulation modules for various parts of the direct drive permanent magnet wind turbine generator on Matlab/Simulink and conduct comparative experiments. The results show that the pitch control strategy based on RBF-PID and sensitive variable sliding mode approach law has a faster response to pitch angle changes, more stable output power, and a oscillation rate of only 0.4% compared to before improvement, achieving the expected control effect.

关键词

风力发电机 / 电力质量 / 神经网络 / 敏感变量 / 滑模控制

Key words

wind turbines / power quality / neural network / sensitive variables / sliding mode control

引用本文

导出引用
陈德海, 陈志文, 王海峰, 李明. 基于RBF-PID和敏感变量滑模趋近律的PMSG恒功率控制[J]. 太阳能学报. 2024, 45(12): 307-315 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1315
Chen Dehai, Chen Zhiwen, Wang Haifeng, Li Ming. PMSG CONSTANT POWER CONTROL BASED ON RBF-PID AND SENSITIVE VARIABLE SLIDING MODE REACHING LAW[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 307-315 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1315
中图分类号: TM614   

参考文献

[1] 尹诗, 侯国莲, 胡晓东, 等. 风力发电机组发电机前轴承故障预警及辨识[J]. 仪器仪表学报, 2020, 41(5): 242-251.
YIN S, HOU G L, HU X D, et al.Fault warning and identification of front bearing of wind turbine generator[J]. Chinese journal of scientific instrument, 2020, 41(5): 242-251.
[2] 韩耀振, 李淑祯, 杜翠齐, 等. 载荷优化的海上漂浮式风电机组二阶滑模变桨控制[J]. 太阳能学报, 2023, 44(1): 313-319.
HAN Y Z, LI S Z, DU C Q, et al.Second-order sliding mode pitch control of floating offshore wind turbines with load optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 313-319.
[3] 米阳, 杨慧霞. 基于干扰观测器的直驱永磁同步风电系统输出功率控制研究[J]. 电网与清洁能源, 2017, 33(1): 79-87.
MI Y, YANG H X.Research of output control of direct driven wind turbine of permanent magnet synchronous generator based on disturbance observer[J]. Power system and clean energy, 2017, 33(1): 79-87.
[4] MAGESH T,KAVITHA P,THIYAGEESAN M .Maximum power extraction from active pitch controlled standalone variable speed wind turbine[J]. International journal of innovative technology and exploring engineering (IJITEE), 2019, 9(2) : 3226-3229.
[5] 吴俊鹏, 翟学, 郭紫昱, 等. 直驱永磁同步风电机组的PID控制器设计与仿真[J].自动化与仪表, 2015, 30(2): 38-41.
WU J P,ZHAI X, GUO Z Y, et al.PID controller design and simulation of PMSG[J]. Automation & instrumentation, 2015, 30(2): 38-41.
[6] 刘德 .基于模糊算法的风力发电机变速变桨控制系统研究[D]. 南京: 南京信息工程大学, 2018.
LIU D.Research on variable speed and pitch control system of wind turbine based on fuzzy algorithm [D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
[7] 李飞飞. 基于双模糊PID控制策略的风力发电机组变桨系统研究[J]. 模糊系统与数学, 2019, 33(3): 29-34.
LI F F.Pitch system of the wind turbines based on the double fuzzy PID control strategy[J]. Fuzzy systems and mathematics, 2019, 33(3): 29-34.
[8] VENKAIAH P,SARKAR B K.Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller[J].Renewable energy,2020,147:55-68.
[9] 任小勇. 基于风电机组LPV模型参考自适应独立变桨整机控制策略研究[J]. 中国设备工程, 2023(6): 139-143.
REN X Y.Research on control strategy of independent pitching machine based on LPV model reference adaptive of wind turbine[J]. China plant engineering, 2023 (6): 139-143.
[10] 何胜华, 黄弘, 范必双, 等. 带自适应模糊神经网络补偿的自耦合PI在风力机变桨控制中的应用[J]. 可再生能源, 2023, 41(5): 618-624.
HE S H,HUANG H, FAN B S, et al.Application of self-coupled PI with adaptive fuzzy neural network compensation in wind turbine pitch control[J]. Renewable energy resources, 2023, 41(5): 618-624.
[11] 何真, 龚春英. 变速风力发电机组的自适应滑模变桨距控制[J]. 计算机仿真, 2013, 30(6): 121-124.
HE Z, GONG C Y.Adaptive sliding mode pitch control for variable-speed wind turbines[J]. Computer simulation, 2013, 30(6): 121-124.
[12] 郭鹏. 模糊前馈与模糊PID结合的风力发电机组变桨距控制[J]. 中国电机工程学报, 2010, 30(8): 123-128.
GUO P.Variable pitch control of wind turbine generator combined with fuzzy feed forward and fuzzy PID controller[J]. Proceedings of the CSEE, 2010, 30(8): 123-128.
[13] 闫学勤, 王维庆, 王海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2020, 41(10): 229-235.
YAN X Q,WANG W Q,WANG H Y.Research on individual pitch control strategy of wind turbines based on IQPI-R[J]. Acta energiae solaris sinica, 2020,41(10): 229-235.
[14] 苑晨阳, 李静, 陈健云, 等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报, 2019, 40(10): 3002-3008.
YUAN C Y, LI J, CHEN J Y, et al.Research on individual pitch ABC-PID control for large wind turbines[J]. Acta energiae solaris sinica, 2019, 40(10): 3002-3008.
[15] 付光杰, 胡明哲. 基于改进型学习率自适应BP神经网络的风力发电变桨距控制技术[J]. 自动化与仪器仪表, 2016(6): 8-10.
FU G J, HU M Z.Pitch control of wind power generation based on improved learning rate adaptive BP neural network[J]. Automation & instrumentation, 2016 (6): 8-10.
[16] COLOMBO L, CORRADINI M L, IPPOLITI G, et al.Pitch angle control of a wind turbine operating above the rated wind speed: a sliding mode control approach[J]. ISA transactions, 2020, 96: 95-102.
[17] 姜长泓, 张凯皓, 张袅娜, 等. 改进指数趋近律的五相永磁同步电机滑模控制[J]. 科学技术与工程, 2022, 22(10): 3975-3981.
JIANG C H, ZHANG K H, ZHANG N N, et al.Improved exponential reaching law sliding mode control for five-phase permanent magnet synchronous motor[J]. Science technology and engineering, 2022, 22(10): 3975-3981.
[18] 刘金琨. 智能控制[M]. 第4版. 北京: 电子工业出版社, 2017.
LIU J K.Intelligent control[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2017.

基金

国家A类重大攻关项目(E210E001010); 江西省教育厅科技项目(GJJ2200809)

PDF(2424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/