风电机组叶片涡流发生器气动特性及应用研究

张林伟, 徐晖, 陈浩, 张超, 彭阁, 李媛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 316-323.

PDF(3596 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3596 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 316-323. DOI: 10.19912/j.0254-0096.tynxb.2023-1316

风电机组叶片涡流发生器气动特性及应用研究

  • 张林伟1, 徐晖2, 陈浩2, 张超3, 彭阁2, 李媛1
作者信息 +

RESEARCH ON AERODYNAMIC CHARACTERISTICS AND APPLICATION OF WIND TURBINE BLADE WITH VORTEX GENERATOR

  • Zhang Linwei1, Xu Hui2, Chen Hao2, Zhang Chao3, Peng Ge2, Li Yuan1
Author information +
文章历史 +

摘要

采用k-ω SST湍流模型 和γ-Reθ转捩模型计算带有涡流发生器翼型的气动性能参数,基于湍流状态下的叶片翼型攻角变化,分析出叶片在准稳态阵风工况下气动攻角变化规律,研究涡流发生器在不同湍流强度、空气密度条件下对风电机组叶片实际运行功率和载荷特性变化的影响。结果表明,风电机组叶片极易受空气密度、环境湍流、转速变化、阵风突变等影响使得翼型易发生失速,涡流发生器可降低风电机组叶片对空气密度和湍流强度影响的敏感性,降低叶片摆振方向载荷和振动。

Abstract

The transition γ-Reθ and k-ω SST turbulence model were used to calculate aerodynamic characteristics of the airfoil with vortex generators, based on the variation of the blade airfoil angle of attack under the turbulent condition, the aerodynamic angle of attack variation pattern of the blade under quasi-steady gust conditions was analyzed, the actual power and load characteristics of wind turbine with vortex generators were investigated in different turbulence and air density conditions. The results indicate that the airfoil stall characteristic of wind turbine blades can be affected by air density, ambient turbulence and rotor speed. Vortex generators an reduce the sensitivity of air density and turbulence intensity to wind turbine blades, as well as decrease blade load and vibration in edgewise direction.

关键词

风电机组 / 涡流发生器 / 翼型 / 空气密度 / 湍流强度

Key words

wind turbines / vortex generators / airfoil / air density / turbulence intensity

引用本文

导出引用
张林伟, 徐晖, 陈浩, 张超, 彭阁, 李媛. 风电机组叶片涡流发生器气动特性及应用研究[J]. 太阳能学报. 2024, 45(12): 316-323 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1316
Zhang Linwei, Xu Hui, Chen Hao, Zhang Chao, Peng Ge, Li Yuan. RESEARCH ON AERODYNAMIC CHARACTERISTICS AND APPLICATION OF WIND TURBINE BLADE WITH VORTEX GENERATOR[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 316-323 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1316
中图分类号: TK8   

参考文献

[1] TAYLOR H D, “The elimination of diffuser separation by vortex generators” united aircraft corporation report[R]. No.R-4012-3, 1947.
[2] TIMMER W A, ROOIJ R P J O M. Summary of the delft university wind turbine dedicated airfoils[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2003: 352.
[3] GAO L Y, ZHANG H, LIU Y Q, et al.Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable energy, 2015, 76: 303-311.
[4] MANOLESOS M, VOUTSINAS S G.Experimental investigation of the flow past passive vortex generators on an airfoil experiencing three-dimensional separation[J]. Journal of wind engineering and industrial aerodynamics, 2015, 142: 130-148.
[5] 周晓亮, 翁海平, 龚玉祥, 等. 涡流发生器设计参数对某40%厚度翼型性能影响的实验研究[J]. 太阳能学报, 2022, 43(6): 212-218.
ZHOU X L, WENG H P, GONG Y X, et al.Experimental study on effect of vortex generator design parameters on 40% thick airfoil[J]. Acta energiae solaris sinica, 2022, 43(6): 212-218.
[6] 张惠, 赵宗德, 周广鑫, 等. 涡发生器参数对风力机翼型性能影响实验研究[J]. 太阳能学报, 2017, 38(12): 3399-3405.
ZHANG H, ZHAO Z D, ZHOU G X, et al.Experimental investigation of effect of vortex generator's parameter on performance of wind turbine aerofoil[J]. Acta energiae solaris sinica, 2017, 38(12): 3399-3405.
[7] 赵振宙, 李涛, 王同光, 等. 基于转捩模型的风力机涡流发生器气动特性分析[J]. 中国电机工程学报, 2016, 36(10): 2721-2727.
ZHAO Z Z, LI T, WANG T G, et al.Analysis on the performance of vortex generators of wind turbine based on transition model[J]. Proceedings of the CSEE, 2016, 36(10): 2721-2727.
[8] 陈杰, 朱呈勇, 钟伟, 等. 涡发生器安装位置对风力机翼型动态失速的影响[J]. 太阳能学报, 2021, 42(8): 401-407.
CHEN J, ZHU C Y, ZHONG W, et al.Effect of chordwise installtion position of vortex generators on dynamic stall of wind turbine airfoil[J]. Acta energiae solaris sinica, 2021, 42(8): 401-407.
[9] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.
YAN C, QU F, ZHAO Y T, et al.Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta aerodynamica sinica, 2020, 38(5): 829-857.
[10] MENTER F R, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes[J]. Flow, turbulence and combustion, 2006, 77(1): 277-303.
[11] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables: part I—model formulation[C]//ASME turbo expo 2004: power for land, sea, and air, June 14-17, 2004, Vienna, Austria. 2008: 57-67.
[12] LANGTRY R, MENTER F.Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005: 522.
[13] 雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报, 2017, 43(2): 207-217.
LEI J M, TAN Z M.Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing university of aeronautics and astronautics, 2017, 43(2): 207-217.
[14] 王强, 赵宁, 王同光, 等. 考虑转捩的风力机翼型动态失速数值模拟[J]. 太阳能学报, 2012, 33(1): 113-119.
WANG Q, ZHAO N, WANG T G, et al.Numerical simulation of wind turbine airfoil dynamic stall with transition modeling[J]. Acta energiae solaris sinica, 2012, 33(1): 113-119.
[15] MENTER F R, SMIRNOV P E, LIU TAO, et al.A one-equation local correlation-based transition model[J]. Flow, turbulence and combustion, 2015, 95(4): 583-619.
[16] RAGHEB A, SELIG M.Multi-element airfoil configurations for wind turbines[C]//29th AIAA Applied Aerodynamics Conference. Honolulu, Hawaii, 2011: 3971.
[17] BURTON T, JENKINS N, SHARPE D, et al.Wind Energy Handbook[M]. Wiley, 2011.
[18] SESHAGIRI A, COOPER E, TRAUB L W.Effects of vortex generators on an airfoil at low Reynolds numbers[J]. Journal of aircraft, 2009, 46(1): 116-122.

基金

中国华能集团科技项目(HNKJ21-HF281)

PDF(3596 KB)

Accesses

Citation

Detail

段落导航
相关文章

/