基于盐溶液储能的热回收型热泵系统特性研究

王林, 吉燕芳, 谈莹莹, 李修真, 王占伟, 常明慧

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 528-535.

PDF(1060 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1060 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 528-535. DOI: 10.19912/j.0254-0096.tynxb.2023-1327

基于盐溶液储能的热回收型热泵系统特性研究

  • 王林, 吉燕芳, 谈莹莹, 李修真, 王占伟, 常明慧
作者信息 +

STUDY ON SALT SOLUTIONN-BASED ENERGY-STORAGE HEAT-RECOVERY HEAT PUMP SYSTEM

  • Wang Lin1, Ji Yanfang, Tan Yingying, Li Xiuzhen, Wang Zhanwei, Chang Minghui
Author information +
文章历史 +

摘要

提出一种基于盐溶液储能的热回收型热泵(SEHHP)系统,由热回收型压缩热泵子系统和盐溶液储/释热子系统组成,夜间电力低谷时段利用富裕电能驱动热泵子系统实现盐溶液与相变材料耦合储存热能,白天供热时段,电能驱动空气源热泵子系统与盐溶液储/释热子系统构成热泵复叠循环制取供热量,从而有效降低社会用电高峰期供热的电力消耗。建立SEHHP系统的热力学模型,评估SEHHP系统的逐时制热性能与经济性。结果表明:SEHHP系统的制热性能与经济性均优于相变储能空气源热泵(PEAHP)系统,其日能耗比PEAHP系统降低34.18%。与PEAHP系统相比,SEHHP系统的综合制热性能系数(CCOP)提高52.20%,而其费用年值降低9.23%。该系统适用于电力峰谷差大的供热地域或场所。

Abstract

A salt solution-based energy-storage heat-recovery heat pump (SEHHP) system is proposed in this paper, which consists of a heat-recovered compression heat pump subsystem and solution-based heat storage/release subsystem. At power-valley hours,the air source heat pump subsystem is used to convert electric energy to chemical energy which is stored in salt solution and phase change material. During the heating hours, the cascaded heat pump system, where air source heat pump subsystem is cascaded with the salt solution-based heat storage/release subsystem, is used for space heating, and helps decrease the total electricity consumption for heating at power-peak hours. The thermodynamic model of SEHHP system is developed to compare the hourly heating performance of SEHHP with phase-change energy-storage air-source heat pump (PEAHP) system,and the economy for the two systems are evaluated. The results show that the heating performance and economy of SEHHP system are better than that of PEAHP system. The daily energy consumption of SEHHP system is 34.18% lower than that of PEAHP system,and the comprehensive heating performance coefficient (CCOP) of SEHHP system is increased by 52.20%,as compared with PEAHP system,while the annual cost of SEHHP system is reduced by 9.23%. The proposed system is suitable for the heating areas with large difference between peak and valley power price.

关键词

热回收 / 热泵 / 溶液储能 / 性能系数 / 经济性分析

Key words

heat recovery / heat pump / solution energy storage / heating coefficient of performance(CCOP) / economic analysis

引用本文

导出引用
王林, 吉燕芳, 谈莹莹, 李修真, 王占伟, 常明慧. 基于盐溶液储能的热回收型热泵系统特性研究[J]. 太阳能学报. 2024, 45(12): 528-535 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1327
Wang Lin, Ji Yanfang, Tan Yingying, Li Xiuzhen, Wang Zhanwei, Chang Minghui. STUDY ON SALT SOLUTIONN-BASED ENERGY-STORAGE HEAT-RECOVERY HEAT PUMP SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 528-535 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1327
中图分类号: TK51   

参考文献

[1] 蒋爱华, 黄竹青, 邹新远. 冰蓄冷空调与电网调峰[J]. 制冷, 2002, 21(1): 41-43.
JIANG A H, HUANG Z Q, ZOU X Y.Ice storage air conditioning and the peak regulation in power grid[J]. Refrigeration, 2002, 21(1): 41-43.
[2] SAID M A, HASSAN H.Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy conversion and management, 2018, 171: 903-916.
[3] 方桂花, 王峰, 刘颖杰, 等. 球形单元储热装置蓄热特性的分析与优化[J]. 太阳能学报, 2023, 44(2): 9-14.
FANG G H, WANG F, LIU Y J, et al.Analysis and optimization of heat storage characteristics of spherical unit heat storage device[J]. Acta energiae solaris sinica, 2023, 44(2): 9-14.
[4] CHEN H F, WANG Y J, LI J, et al.Experimental research on a solar air-source heat pump system with phase change energy storage[J]. Energy and buildings, 2020, 228: 110451.
[5] 赵洪运, 邱国栋, 宇世鹏. 可实现快速制热和除霜的蓄能型空气源热泵系统的实验研究[J]. 太阳能学报, 2021, 42(3): 184-190.
ZHAO H Y, QIU G D, YU S P.Experimental study on energy storage air source heat pump system with quick heating and defrosting[J]. Acta energiae solaris sinica, 2021, 42(3): 184-190.
[6] 王彦龙, 蒋绿林, 沈冰燕, 等. 空气源相变蓄能复叠式热泵供暖系统的研究[J]. 太阳能学报, 2021, 42(9): 14-18.
WANG Y L, JIANG L L, SHEN B Y, et al.Research on air source phase change energy storage cascade heat pump heating system[J]. Acta energiae solaris sinica, 2021, 42(9): 14-18.
[7] WU J H, XIAN T, LIU X.All-weather characteristic studies of a direct expansion solar integrated air source heat pump system based on PCMs[J]. Solar energy, 2019, 191: 34-45.
[8] RIZZA J J.Aqueous lithium bromide TES and R-123 chiller in series[J]. Journal of solar energy engineering, 2003, 125(1): 49-54.
[9] 曹艺飞, 王林, 王占伟, 等.利用电压缩制冷循环的盐溶液蓄冷系统特性研究[J].工程热物理学报, 2022, 43(6): 1478-1484.
CAO Y F, WANG L, WANG Z W, et al.Study on salt solution cold storage system with electric compression refrigeration cycle[J]. Journal of engineering thermophysics, 2022, 43(6): 1478-1484.
[10] LAWRENCE N, ELBEL S.Theoretical and practical comparison of two-phase ejector refrigeration cycles including First and Second Law analysis[J]. International journal of refrigeration, 2013, 36(4): 1220-1232.
[11] CIMSIT C, OZTURK I T.Analysis of compression-absorption cascade refrigeration cycles[J]. Applied thermal engineering, 2012, 40: 311-317.
[12] 洪文鹏, 何建军. 回收电厂余热的新型吸收式热泵系统[J].东北电力大学学报, 2019, 39(3): 67-73.
HONG W P, HE J J.Thenew absorption heat pump system to reclam waste heat in power plant[J]. Journal of Northeast Electric Power University, 2019, 39(3): 67-73.
[13] YU M, LI S, ZHANG X J, et al.Techno-economic analysis of air source heat pump combined with latent thermal energy storage applied for space heating in China[J]. Applied thermal engineering, 2021, 185: 116434.
[14] LIN Y, FAN Y B, YU M, et al.Performance investigation on an air source heat pump system with latent heat thermal energy storage[J]. Energy, 2022, 239: 121898.

基金

国家自然科学基金(52376005; 52378094); 河南省科技攻关项目(232102321092); 河南省高效科技创新团队(22IRTSTHN006)

PDF(1060 KB)

Accesses

Citation

Detail

段落导航
相关文章

/