沼气工程进料池增温搅拌系统模拟优化研究

龚雷阳, 朱旭伟, 焦翔翔, 王花平, 程远达, 赵昱

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 460-468.

PDF(1512 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1512 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 460-468. DOI: 10.19912/j.0254-0096.tynxb.2023-1338

沼气工程进料池增温搅拌系统模拟优化研究

  • 龚雷阳1, 朱旭伟1, 焦翔翔2, 王花平2, 程远达1, 赵昱1
作者信息 +

OPTIMIZATION SIMULATION STUDY OF HEATING STIRRING SYSTEM FOR BIOGAS ENGINEERING FEEDING TANKS

  • Gong Leiyang1, Zhu Xuwei1, Jiao Xiangxiang2, Wang Huaping2, Cheng Yuanda1, Zhao Yu1
Author information +
文章历史 +

摘要

为研究增温搅拌系统对沼气进料池温度场的影响,采用计算流体动力学方法,以唐山某养牛场中覆盖有阳光板的方形进料池为研究对象,建立物理模型,以进料池中螺旋加热盘管的不同供水方式,搅拌器不同运行方式、倾角和池体的形状为影响因素对沼液温度场进行优化研究。通过对比模拟与实测数据验证模型的可靠性。最后,以X=0截面为基准面,绘制温度云图,并将沼液温度按不同区间分成低温区、中温区和高温区,统计3个区间所占比例。结果表明,加热盘管采用下供上回的形式有利于沼液升温,可消除低温区,并将中温区占比从原先的92.15%提升到98.01%,增长6.4%。搅拌器可改善高温沼液集中在盘管周围的情况,在此基础上采用两个不同转向的搅拌器,可将高温区占比从原来的1.99%提升到5.26%,增长166%。搅拌器的倾角不宜设置过大,设置成45°更为合适。在加热条件和搅拌器参数相同的前提下,方形池与圆形池在低温和高温区比例接近,但圆形池的中温区比例比方形池多2%。圆形池的中温区比例更高,搅拌死区更小,搅拌效果更好。

Abstract

The heating stirring system can improve the temperature and uniformity of the biogas slurry in the biogas feeding tanks, and effectively increase the biogas production. In order to study the effect of the heating stirring system on the temperature distribution of the biogas feeding tanks, using the computational fluid dynamics, the physical model was established on a square feeding tank, which was covered with hollow polycarbonate panels in a cattle farm in Tangshan. The temperature distribution of biogas slurry was optimized by using different water supply modes of helical heating coil tube heat exchangers, different operation modes and obliquity angles of agitators, and square or circle of tank body shape. The reliability of the model is verified by comparing the simulated and measured data. Finally, the temperature cloud diagrams were drawn on the base of section X=0, and the biogas slurry temperature was divided into low temperature zone, middle temperature zone and high temperature zone according to different intervals. The results show that the heating coil adopts the form of lower supply and upper return, which is beneficial to the temperature rise of biogas slurry and can eliminate the low temperature zone and increase the proportion of the middle temperature zone from 92.15% to 98.01%, with an increase of 6.4%. The agitators can improve the uniformity of the temperature. On this basis, using two agitators with different steering can increase the proportion of high-temperature zone from 1.99% to 5.26%, with an increase of 166%. The inclined angle of agitators should not be set too large, 45°is a suitable angle. Under the same heating conditions and agitator parameters, the proportion of low and high temperature zone is close between square tank and circular tank, but the proportion of middle temperature zone of circular tank is 2% more than that of square tank. The proportion of medium temperature zone is higher, the mixing dead zone is smaller and the mixing effect is better.

关键词

进料池 / 计算流体动力学 / 温度场 / 搅拌器 / 螺旋盘管

Key words

feeding tank / computational fluid dynamics(CFD) / temperature field / stirrer / helical coiled tube

引用本文

导出引用
龚雷阳, 朱旭伟, 焦翔翔, 王花平, 程远达, 赵昱. 沼气工程进料池增温搅拌系统模拟优化研究[J]. 太阳能学报. 2024, 45(12): 460-468 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1338
Gong Leiyang, Zhu Xuwei, Jiao Xiangxiang, Wang Huaping, Cheng Yuanda, Zhao Yu. OPTIMIZATION SIMULATION STUDY OF HEATING STIRRING SYSTEM FOR BIOGAS ENGINEERING FEEDING TANKS[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 460-468 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1338
中图分类号: TK6   

参考文献

[1] WANG Y Z, ZHANG Y L, LI J X, et al.Biogas energy generated from livestock manure in China: current situation and future trends[J]. Journal of environmental management, 2021, 297: 113324.
[2] 潘世优, 黎贞崇, 韦宇拓. 禽畜粪便资源化利用技术的研究进展[J]. 广西科学院学报, 2022, 38(3): 222-235.
PAN S Y, LI Z C, WEI Y T.Research progress on resource utilization technology of livestock manure[J]. Journal of Guangxi Academy of Aciences, 2022, 38(3): 222-235.
[3] CHAE K J, JANG A, YIM S K, et al.The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure[J]. Bioresource technology, 2008, 99(1): 1-6.
[4] 张无敌, 宋洪川, 尹芳, 等. 沼气发酵与综合利用[M]. 昆明: 云南科技出版社, 2004.
ZHANG W D, SONG HC, YIN F, et al.Biogas fermentation and comprehensive utilization[M]. Kunming: Yunnan Science and Technology Press, 2004.
[5] 杨红男. 空气搅拌对沼气发酵产气性能和微生物代谢的影响[D]. 北京: 中国农业科学院, 2020.
YANG H N.Effect of air agitation on biogas production performance and microbial metabolism in biogas fermentation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[6] WANG J, XUE Q W, GUO T, et al.A review on CFD simulating method for biogas fermentation material fluid[J]. Renewable and sustainable energy reviews, 2018, 97: 64-73.
[7] 黄如一, 黄正昕, 冉毅, 等. 利用CFD多相流模型优化设计沼气料液搅拌流场的方法研究[J]. 中国沼气, 2019, 37(5): 57-63.
HUANG R Y, HUANG Z X, RAN Y, et al.Optimizing the stirred flow pattern in biogas fermentation using CFD multiphase flow mode[J]. China biogas, 2019, 37(5): 57-63.
[8] 张海晟, 郑源, 张智, 等. 不同安放角度对污水搅拌器水力特性的影响[J]. 排灌机械工程学报, 2021, 39(5): 483-487.
ZHANG H S, ZHENG Y, ZHANG Z, et al.Influence of placement angle of sewage mixer on its hydraulic characteristics[J]. Journal of drainage and irrigation machinery engineering, 2021, 39(5): 483-487.
[9] 朱桂华, 彭南辉, 张傲林, 等. 潜水搅拌器安装角度对盐泥水洗搅拌效果的影响[J]. 西安交通大学学报, 2019, 53(7): 16-22, 59.
ZHU G H, PENG N H, ZHANG A L, et al.Influence of installation angle of submersible mixer on salt water washing and mixing effect[J]. Journal of Xi'an Jiaotong University, 2019, 53(7): 16-22, 59.
[10] 刘艳峰, 王道坤, 陈耀文, 等. 沼气池内PEX螺旋盘管换热性能实验研究[J]. 太阳能学报, 2019, 40(10): 2857-2863.
LIU Y F, WANG D K, CHEN Y W, et al.Experiment study on heat transfer characteristics of PEX coil heat exchanger in biogas digester[J]. Acta energiae solaris sinica, 2019, 40(10): 2857-2863.
[11] CHEN Y W, LIU Y F, WANG D J, et al.Numerical study of heat transfer performance of helical coiled tubes for heating high-solids slurry in household biogas digester[J]. Applied thermal engineering, 2020, 166: 114666.
[12] CONTI F, SAIDI A, GOLDBRUNNER M.Numeric simulation-based analysis of the mixing process in anaerobic digesters of biogas plants[J]. Chemical engineering & technology, 2020, 43(8): 1522-1529.
[13] 李少白, 胡钊晨, 寇巍. 基于非牛顿性的牛粪厌氧发酵过程的数值模拟[J]. 太阳能学报, 2021, 42(7): 469-473.
LI S B, HU Z C, KOU W.Numerical simulation of cow manure anaerobic digestion based on non-Newtonian property[J]. Acta energiae solaris sinica, 2021, 42(7): 469-473.
[14] SU X, SHAO X L, GENG Y N, et al.Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system[J]. Renewable energy, 2022, 197: 59-68.
[15] 尹伟齐, 曹秀芹, 张达飞. 猪粪流变特性及基于黏度曲线的反应器死区研究[J]. 中国沼气, 2017, 35(3): 27-32.
YIN W Q, CAO X Q, ZHANG D F.The rheological properties of pig manure and the dead zone of the reactor based on the viscosity curve[J]. China biogas, 2017, 35(3): 27-32.
[16] 苏煌. 牛粪为主多元物料混合厌氧发酵特性实验研究[D]. 郑州: 河南农业大学, 2016.
SU H.Experimental study on anaerobic fermentation characteristics of cow dung-based multi-component materials[D]. Zhengzhou: Henan Agricultural University, 2016.
[17] 姜鑫, 崔建明, 田瑞. 太阳能沼气池换热盘管布置的优化设计[J]. 太阳能学报, 2018, 39(11): 3076-3080.
JIANG X, CUI J M, TIAN R.Optimization design of pool heat exchange coil by solar enery[J]. Acta energiae solaris sinica, 2018, 39(11): 3076-3080.
[18] 陆耀庆. 实用供热空调设计手册[M]. 2版. 北京: 中国建筑工业出版社, 2008.
LU Y Q.Practical heating and air conditioning design manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008.
[19] 任向轩, 汤方平, 徐莹, 等. 潜水搅拌器叶片安放角的性能[J]. 南水北调与水利科技, 2021, 19(4): 805-813.
REN X X, TANG F P, XU Y, et al.Performance analysis of blade angle of submersible agitator[J]. South-to-north water transfers and water science & technology, 2021, 19(4): 805-813.

基金

山西省科技厅中央引导地方科技发展资金项目(YDZJSX2021A022)

PDF(1512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/