海上风电数值模式误差修正技术研究

张皓, 文仁强, 杨定华, 易侃, 杜梦蛟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 370-378.

PDF(1581 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1581 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 370-378. DOI: 10.19912/j.0254-0096.tynxb.2023-1339

海上风电数值模式误差修正技术研究

  • 张皓, 文仁强, 杨定华, 易侃, 杜梦蛟
作者信息 +

RESEARCH ON NUMERICAL MODEL ERROR-CORRECTION TECHNIQUES FOR OFFSHORE WIND POWER

  • Zhang Hao, Wen Renqiang, Yang Dinghua, Yi Kan, Du Mengjiao
Author information +
文章历史 +

摘要

针对现有数值模式预报数据精确度有限的问题,结合广东海域多处实际测风数据,分别采用卷积长短期记忆网络、集成学习等多种机器学习框架建立误差修正模型,并对各模型进行适用性验证及分析。在此基础上,提出更适用于风向误差计算的基于三角函数规律的代价函数。结果表明,所建立的AdaBoost及GBDT模型对风速、风向变量的修正均能取得优异效果。

Abstract

In view of the limited accuracy of the existing numerical model prediction data, this paper combined with the actual wind measurement data of several places in the Guangdong sea area, respectively using convolutional long short-term memory network, integrated learning and other machine learning frameworks to establish error correction models, and to verify and analyze the applicability of each model. On this basis, a cost function based on trigonometric function law which is more suitable for wind direction error calculation is proposed. The results show that the AdaBoost and GBDT models can achieve excellent results in the correction of wind speed and wind direction variables.

关键词

海上风电 / 数值模式 / 误差修正 / 机器学习 / 提升模型

Key words

offshore wind power / numerical model / error correction / machine learning / boosting model

引用本文

导出引用
张皓, 文仁强, 杨定华, 易侃, 杜梦蛟. 海上风电数值模式误差修正技术研究[J]. 太阳能学报. 2024, 45(12): 370-378 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1339
Zhang Hao, Wen Renqiang, Yang Dinghua, Yi Kan, Du Mengjiao. RESEARCH ON NUMERICAL MODEL ERROR-CORRECTION TECHNIQUES FOR OFFSHORE WIND POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 370-378 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1339
中图分类号: TK81   

参考文献

[1] 中华人民共和国国家发展和改革委员会. “十四五”可再生能源发展规划[EB/OL].https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf.
National Development and Reform Commission. 14th Five-Year Plan for renewable energy development[EB/OL].https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf.
[2] 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060.
QIAN Z, PEI Y, CAO L X, et al.Review of wind power forecasting method[J]. High voltage engineering, 2016, 42(4): 1047-1060.
[3] CHENG W Y Y, LIU Y B, LIU Y W, et al. The impact of model physics on numerical wind forecasts[J]. Renewable energy, 2013, 55: 347-356.
[4] JIMÉNEZ P A, DUDHIA J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model[J]. Journal of applied meteorology and climatology, 2012, 51(2): 300-316.
[5] XU Q Y, HE D W, ZHANG N, et al.A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1283-1291.
[6] 曾晓青, 薛峰, 赵瑞霞, 等. 几种格点化温度滚动订正预报方案对比研究[J]. 气象, 2019, 45(7): 1009-1018.
ZENG X Q, XUE F, ZHAO R X, et al.Comparison study on several grid temperature rolling correction forecasting schemes[J]. Meteorological monthly, 2019, 45(7): 1009-1018.
[7] KLEIN W H, LEWIS B M, ENGER I.Objective prediction of five-day mean temperatures during winter[J]. Journal of meteorology, 1959, 16(6): 672-682.
[8] GLAHN H R, LOWRY D A.The use of model output statistics(MOS) in objective weather forecasting[J]. Journal of applied meteorology, 1972, 11(8): 1203-1211.
[9] HOMLEID M.Diurnal corrections of short-term surface temperature forecasts using the Kalman filter[J]. Weather and forecasting, 1995, 10(4): 689-707.
[10] 黄威, 牛若芸. 基于集合预报和支持向量机的中期强降雨集成预报试验[J]. 气象, 2017, 43(9): 1110-1116.
HUANG W, NIU R Y.The medium-term multi-model integration forecast experimentation for heavy rain based on support vector machine[J]. Meteorological monthly, 2017, 43(9): 1110-1116.
[11] RODRIGUES E R, OLIVEIRA I, CUNHA R L F, et al. DeepDownscale: a deep Learning strategy for high-resolution weather forecast[J]. IEEE Computer Society, 2018: 415-422.
[12] COVER T, HART P.Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
[13] 谷云东, 马冬芬, 程红超. 基于相似数据选取和改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报, 2019, 31(5): 64-69.
GU Y D, MA D F, CHENG H C.Power load forecasting based on similar-data selection and improved gradient boosting decision tree[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 64-69.
[14] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[15] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017, 41(21): 33-39.
TAN J, DENG C H, YANG W, et al.Ultra-short-term photovoltaic power forecasting in microgrid based on Adaboost clustering[J]. Automation of electric power systems, 2017, 41(21): 33-39.
[16] 胡澜也, 蒋文博, 李艳婷. 基于LightGBM的风力发电机故障诊断[J]. 太阳能学报, 2021, 42(11): 255-259.
HU L Y, JIANG W B, LI Y T.Fault diagnosis for wind turbine based on LightGBM[J]. Acta energiae solaris sinica, 2021, 42(11): 255-259.

基金

中国长江三峡集团有限公司科研项目(NBZZ202300197)

PDF(1581 KB)

Accesses

Citation

Detail

段落导航
相关文章

/