不同工况下光储氢微网系统协调控制策略

李建林, 赵文鼎, 梁忠豪, 袁晓冬, 曾飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 10-19.

PDF(2167 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2167 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 10-19. DOI: 10.19912/j.0254-0096.tynxb.2023-1347
“新型电力系统中光储规划配置及优化运行技术”专题

不同工况下光储氢微网系统协调控制策略

  • 李建林1, 赵文鼎1, 梁忠豪1, 袁晓冬2, 曾飞2
作者信息 +

COORDINATED CONTROL STRATEGIES FOR PHOTOVOLTAIC ENERGY STORAGE HYDROGEN ENERGY MICRO-GRID SYSTEMS UNDER DIFFERENT OPERATING CONDITIONS

  • Li Jianlin1, Zhao Wending1, Liang Zhonghao1, Yuan Xiaodong2, Zeng Fei2
Author information +
文章历史 +

摘要

针对光储氢微网系统运行时系统内部功率协调分配、切换平滑度以及电压稳定性等问题,提出一种考虑系统不同需求指令的功率分层协调运行策略。以提升系统稳定性、光氢系统结合度以及平滑运行为目的,搭建光储氢微网系统仿真模型,一方面,通过分层控制实现系统指令层与被控层之间的协调运行,并以上网电价为判断指标,保障系统经济性运行;另一方面,基于系统运行模式将系统运行工况分为8种,并通过多功率协调控制策略使得光储氢微网系统能够稳定运行、工况切换平滑以及母线电压稳定。最后通过仿真验证所建模型与控制策略的正确性与有效性。

Abstract

For the problems of coordinated power distribution, switching smoothness and voltage stability within the system during the operation of photovoltaic energy storage hydrogen energy micro-grid system, this paper proposes a power hierarchical coordinated operation strategy that considers the different demand commands of the system. A simulation model of the photovoltaic energy storage hydrogen energy micro-grid system was built with the aim of improving system stability, photovoltaic hydrogen system integration and smooth operation, On the one hand, the coordinated operation between the command layer and the controlled layer of the system is realized through hierarchical control, and the on-grid electricity price is used as a judgment indicator to guarantee the economic operation of the system; on the other hand, the system is categorized into eight operating conditions based on the system operating state, and the multi-power co-ordination control strategy enables the stable operation, smooth working condition switching and stable bus voltage of the optical storage and hydrogen micro-grid system. Finally, the correctness and effectiveness of the built model and control strategy are verified by simulation.

关键词

光伏 / 氢储能 / 微电网 / 制氢 / 燃料电池 / 协调控制

Key words

photovoltaic / hydrogen energy storage / micro-grid / hydrogen production / fuel cell / coordinated control

引用本文

导出引用
李建林, 赵文鼎, 梁忠豪, 袁晓冬, 曾飞. 不同工况下光储氢微网系统协调控制策略[J]. 太阳能学报. 2024, 45(7): 10-19 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1347
Li Jianlin, Zhao Wending, Liang Zhonghao, Yuan Xiaodong, Zeng Fei. COORDINATED CONTROL STRATEGIES FOR PHOTOVOLTAIC ENERGY STORAGE HYDROGEN ENERGY MICRO-GRID SYSTEMS UNDER DIFFERENT OPERATING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 10-19 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1347
中图分类号: TK91   

参考文献

[1] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J].太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[2] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[3] 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8.
LI J L, LI G H, MA S L, et al.Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal power generation, 2021, 50(6): 1-8.
[4] 蔡国伟, 孔令国, 彭龙, 等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报, 2016, 37(10): 2451-2459.
CAI G W, KONG L G, PENG L, et al.Modeling and control of active PV generation system based on hydrogrn storage[J]. Acta energiae solaris sinica, 2016, 37(10): 2451-2459.
[5] 王激华, 叶夏明, 秦如意, 等. 基于指数型下垂控制的氢电混合储能微网协调控制策略研究[J]. 中国电力, 2023, 56(7): 43-53.
WANG J H, YE X M, QIN R Y, et al.Research on coordinated control strategy of hydrogen-electric hybrid energy storage microgrid based on exponential-function-based droop control[J]. Electric power, 2023, 56(7): 43-53.
[6] 李建林, 赵文鼎, 梁忠豪, 等. 光储一体化耦合制氢系统控制策略及仿真分析[J]. 热力发电, 2022, 51(11): 148-155.
LI J L, ZHAO W D, LIANG Z H, et al.Control strategy and simulation analysis of coupled optical storage systems for hydrogen production[J]. Thermal power generation, 2022, 51(11): 148-155.
[7] 彭龙, 蔡国伟, 孔令国, 等. 光氢储并网控制策略[J]. 电力建设, 2016, 37(9): 56-61.
PENG L, CAI G W, KONG L G, et al.Control strategy of grid-connected PV-hydrogen-storage generation[J]. Electric power construction, 2016, 37(9): 56-61.
[8] 蔡国伟, 彭龙, 孔令国, 等. 光氢混合发电系统功率协调控制[J]. 电力系统自动化, 2017, 41(1): 109-116.
CAI G W, PENG L, KONG L G, et al.Power coordinated control of photovoltaic and hydrogen hybrid power generation system[J]. Automation of electric power systems, 2017, 41(1): 109-116.
[9] 杨天国, 何鹏, 张浩, 等. 多变流器互联交直流微网集群一致性功率协同控制[J]. 电力系统及其自动化学报: 2024, 36(4): 120-132.
YANG T G, HE P, ZHANG H, et al.Coherent power cooperative control of AC/DC microgrid clusters with multiple converter interconnections[J]. Proceedings of the CSU-EPSA: 2024, 36(4): 120-132.
[10] 张学, 裴玮, 梅春晓,等. 含电/氢复合储能系统的孤岛直流微电网模糊功率分配策略与协调控制方法[J]. 高电压技术, 2022, 48(3): 958-968.
ZHANG X, PEI W, MEI C X, et al.Fuzzy power allocation strategy and coordinated control method of islanding DC microgrid with electricity/hydrogen hybrid energy storage systems[J]. High voltage engineering, 2022, 48(3): 958-968.
[11] 刘畅, 陈启卷, 陈桂月, 等. 光伏-燃料电池混合发电系统建模与仿真[J]. 太阳能学报, 2018, 39(11): 3113-3119.
LIU C, CHEN Q J, CHEN G Y, et al.Modeling and simulation of PV-fuel cell hybrid power system[J]. Acta energiae solaris sinica, 2018, 39(11): 3113-3119.
[12] 李建林, 屈树慷, 黄孟阳, 等. 锂离子电池建模现状研究综述[J]. 热力发电, 2021, 50(7): 1-7.
LI J L, QU S K, HUANG M Y, et al.A review of current research on lithium-ion battery modeling[J]. Thermal power generation, 2021, 50(7): 1-7.
[13] MA Z W, WITTEMAN L, WRUBEL J A, et al.A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International journal of hydrogen energy, 2021, 46(34): 17627-17643.
[14] YIGIT T, SELAMET O F.Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system[J]. International journal of hydrogen energy, 2016, 41(32): 13901-13914.
[15] 张帆, 王博文, 樊林浩, 等. 光伏发电制氢储能系统仿真及性能分析研究[J]. 工程热物理学报, 2022, 43(10): 2653-2658.
ZHANG F, WANG B W, FAN L H, et al.Development of photovoltaic-electrolyzer-fuel cell system for hydrogen production and power generation[J]. Journal of engineering thermophysics, 2022, 43(10): 2653-2658.
[16] 王振, 卫东, 叶洪吉. 基于温湿度解耦建模的质子交换膜燃料电池内阻特性研究[J]. 太阳能学报, 2020, 41(9): 1-8.
WANG Z, WEI D, YE H J.Internal resistance of PEMFC modeled based on temperature and humidity decoupling modeling[J]. Acta energiae solaris sinica, 2020, 41(9): 1-8.
[17] 邓浩, 陈洁, 腾扬新, 等. 风氢耦合系统能量管理策略研究[J]. 太阳能学报, 2021, 42(1): 256-263.
DENG H, CHEN J, TENG Y X, et al.Energy management strategy of wind power coupled with hydrogen system[J]. Acta energiae solaris sinica, 2021, 42(1): 256-263.
[18] LI J L, LI G H, MA S L, et al.Modeling and simulation of hydrogen energy storage system for power-to-gas and gas-to-power systems[J]. Journal of modern power systems and clean energy, 2023, 11(3): 885-895.
[19] 尹晨旭, 朱刘柱, 项超, 等. 考虑氢能交互转换的综合能源微网协调调度方法[J]. 中国电力, 2020, 53(10): 88-95, 148.
YIN C X, ZHU L Z, XIANG C, et al.Coordinated dispatch method for integrated microgrid energy system considering interactive hydrogen conversion[J]. Electric power, 2020, 53(10): 88-95, 148.
[20] PARVIN M, YOUSEFI H, NOOROLLAHI Y.Techno-economic optimization of a renewable micro grid using multi-objective particle swarm optimization algorithm[J]. Energy conversion and management, 2023, 277: 116639.
[21] 吴青峰, 齐磊, 李昕, 等. 基于多群协调的孤岛微电网时间约束研究[J]. 太阳能学报, 2021, 42(6): 45-53.
WU Q F, QI L, LI X, et al.Research on time constraint of islanded microgrid based on multi-group coordination[J]. Acta energiae solaris sinica, 2021, 42(6): 45-53.
[22] 尚博阳, 许寅, 王颖, 等. 参与辅助服务的用户侧储能优化配置及经济分析[J]. 中国电力, 2023, 56(2): 164-170, 178.
SHANG B Y, XU Y, WANG Y, et al.Optimal configuration and economic analysis of user-side energy storage participating in auxiliary services[J]. Electric power, 2023, 56(2): 164-170, 178.

基金

国家电网有限公司科技项目(5400-202318247A-1-1-ZN)

PDF(2167 KB)

Accesses

Citation

Detail

段落导航
相关文章

/