大波波形的准确刻画对波浪能发电装置的效率及载荷计算具有重要意义,基于条件概率的准确定性理论具有描述平均大波的波形的潜能。基于2018年台风“安比”过境时浙江温岭近岸海域实测的持续3 d的波浪数据,通过自编程序计算实测平均大波波形与准确定性理论值,进而分析讨论准确定性理论在该算例的适用性。结果表明:总体而言计算精度良好;海况的谱尖度越大(谱越窄),准确定性理论计算的平均大波波形越精确,相关性系数达到-0.56;海况的波陡值与准确定性理论的计算精度相关系数为0.36;海况的高斯性与准确定性理论的计算精度并无很强的关联性。
Abstract
Accurate characterization of the large wave shapes is vital for efficiency and load calculations of wave energy converters. Meanwhile, conditional probability-based quasi-determinism theory offers a way to access it. Using 3-day wave measurement data collected offshore of Wenling, Zhejiang Province during Typhoon Ampil's transit in 2018, the measured average shapes of large waves and corresponding quasi-determinism waves are calculated by a self-programmed code. Then,the applicability of quasi-determinism theory for accurately characterizing these large wave shapes is discussed. The results show that the overall accuracy of the calculation is good; the larger the spectral peakedness of the spectrum (the narrower the spectrum), the higher accuracy of the quasi-determinism theory, and the correlation coefficient reaches -0.56; the correlation coefficient between wave steepness and quasi-determinism theory accuracy is 0.36; the Gaussianity of the sea state has no substantial relationship with quasi-determinism theory accuracy.
关键词
波浪能 /
准确定性理论 /
平均大波波形 /
谱宽 /
波陡 /
高斯性
Key words
wave energy /
quasi-determinism theory /
average shape of large waves /
spectral width /
wave steepness /
Gaussianity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[2] 夏海南, 王项南, 李强, 等. 波浪能发电装置现场测试中波浪参数比测分析[J]. 太阳能学报, 2022, 43(6): 251-255.
XIA H N, WANG X N, LI Q, et al.Comparison and analysis of wave parameters in field test of wave energy converters[J]. Acta energiae solaris sinica, 2022, 43(6): 251-255.
[3] STANSELL P, WOLFRAM J, ZACHARY S.Horizontal asymmetry and steepness distributions for wind-driven ocean waves from severe storms[J]. Applied ocean research, 2003, 25(3): 137-155.
[4] ZANG J, TAYLOR P H, MORGAN G, et al.Steep wave and breaking wave impact on offshore wind turbine foundations: ringing re-visited[C]//25th International Workshop on Water Waves and Floating Bodies. Harbin, China, 2010: 9-12.
[5] FALTINSEN O M, GRECO M, LANDRINI M.Green water loading on a FPSO[J]. Journal of offshore mechanics and Arctic engineering, 2002, 124(2): 97-103.
[6] LINDGREN G.Some properties of a normal process near a local maximum[J]. The annals of mathematical statistics, 1970, 41(6): 1870-1883.
[7] LONGUET-HIGGINS M S. The statistical analysis of a random, moving surface[J]. Philosophical transactions of the royal society of London series A, mathematical and physical sciences, 1957, 249(966): 321-387.
[8] BOCCOTTI P.Some new results on statistical properties of wind waves[J]. Applied ocean research, 1983, 5(3): 134-140.
[9] BOCCOTTI P.Quasi-determinism of sea wave groups[J]. Meccanica, 1989, 24(1): 3-14.
[10] TROMANS P S, ANATRUK A H R, HAGEMEIJER P. New model for the kinematics of large ocean waves application as a design wave[J]. Proceedings of the first international offshore and polar engineering conference, 1991: 64-71.
[11] BOCCOTTI P.Field verification of quasi-determinism theory for wind waves interacting with vertical breakwater[J]. Journal of waterway, port, coastal, and ocean engineering, 2013, 139(5): 358-364.
[12] PHILLIPS O M, GU D F, DONELAN M.Expected structure of extreme waves in a Gaussian Sea. part I: theory and SWADE buoy measurements[J]. Journal of physical oceanography, 1993, 23(5): 992-1000.
[13] TAYLOR P H, WILLIAMS B A.Wave statistics for intermediate depth water: NewWaves and symmetry[J]. Journal of offshore mechanics and Arctic engineering, 2004, 126(1): 54-59.
[14] SANTO H, TAYLOR P H, EATOCK TAYLOR R, et al.Average properties of the largest waves in hurricane camille[J]. Journal of offshore mechanics and Arctic engineering, 2013, 135(1): 011602.
[15] WHITTAKER C N, RABY A C, FITZGERALD C J, et al.The average shape of large waves in the coastal zone[J]. Coastal engineering, 2016, 114: 253-264.
[16] GUEDES SOARES C, PASCOAL R.On the profile of large ocean waves[J]. Journal of offshore mechanics and Arctic engineering, 2005, 127(4): 306-314.
[17] 夏维达, 马玉祥, 董国海. 随机波列中极端波浪波形和波高分布的试验研究[J]. 哈尔滨工程大学学报, 2023, 44(9): 1534-1541.
XIA W D, MA Y X, DONG G H.Experimental study on extreme wave shape and wave height distribution in random wave train[J]. Journal of Harbin engineering university, 2023, 44(9): 1534-1541.
[18] 付睿丽, 才华艺, 陶爱峰, 等. 挪威海畸形波波形特征研究[J]. 海洋学报, 2023, 45(4): 133-143.
FU R L, CAI H Y, TAO A F, et al.Researches on shapes of freak waves in Norwegian Sea[J]. Haiyang xuebao, 2023, 45(4): 133-143.
[19] CHRISTOU M, EWANS K.Field measurements of rogue water waves[J]. Journal of physical oceanography, 2014, 44(9): 2317-2335.
[20] BOCCOTTI P.Wave mechanics for ocean engineering[M]. Amsterdam: Elsevier, 2000
[21] GODA Y.Random seas and design of maritime structures[M]. Singapore: World Scientific, 2000.
[22] GODA Y.Numerical experiments on wave statistics with spectral simulation[J]. Report port harbour research institute, 1970, 9(3): 3-57.
[23] LILLIEFORS H W.On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American statistical association, 1967, 62(318): 399-402.
[24] TAYFUN M A.On narrow-band representation of ocean waves: 1. Theory[J]. Journal of geophysical research: oceans, 1986, 91(C6): 7743-7752.
[25] PETROVA P G, GUEDES SOARES C.Wave height distributions in bimodal sea states from offshore basins[J]. Ocean engineering, 2011, 38(4): 658-672.