针对基于超临界二氧化碳布雷顿循环的塔式太阳能发电系统,采用热力设计与气动设计结合的方法,设计超临界二氧化碳工质向心透平,探究透平内部流动特性、损失情况,泄漏涡形成与发展以及不同动叶包角下透平性能的变化规律。结果显示:动叶内部损失主要集中在动叶轴向流域上部,由于叶顶间隙存在,从动叶吸力面向压力面过来的泄漏流与主流相互掺混,在动叶子午面转折角处形成较大的泄漏涡,并不断卷吸在轴向流域形成螺旋状流动。通过增大动叶包角能有效抑制涡流在流道内的发展,同时降低余速损失,但也会造成叶片载荷增加、叶顶泄漏强度提升、整机反动度和摩擦损失增加。通过动叶包角优化后,在45°包角时透平效率达到最大值82.18%,相较于优化前效率提升0.84%。
Abstract
For the tower solar power generation system based on the supercritical CO2 Brayton cycle, the main thermal parameters of the radial inflow turbine are given by combining thermal design and aerodynamic design. The internal flow characteristics and loss, formation and development of leakage vortices, and the change law of turbine performance under different rotor blade wrapping angles are explored through numerical simulation. The results show that the internal loss of the rotor blade is mainly concentrated in the upper part of the axial basin of the rotor blade, and due to the existence of the leaf top gap, the leakage flow coming from the pressure plane of the driven blade suction is mixed with the main stream, forming a large leakage vortex at the turning angle of the meridian surface of the rotor blade and continuously sucking to form a spiral flow in the axial basin. By increasing the blade wrap angle, the development of eddy currents in the flow channel can be effectively suppressed, while reducing residual speed loss, but it will also increase in blade load, blade tip leakage strength, overall reaction and friction loss. After the optimization of the rotor blade wrapping angle, the turbine efficiency reaches a maximum of 82.18% at a wrapping angle of 45°, which is 0.84% higher than that before optimization.
关键词
太阳能 /
布雷顿循环 /
向心透平 /
气动分析 /
包角
Key words
solar energy /
Brayton cycle /
radial flow turbine /
aerodynamic analysis /
wrap angle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 纪宇轩, 邢凯翔, 岑可法, 等. 超临界二氧化碳布雷顿循环研究进展[J]. 动力工程学报, 2022, 42(1): 1-9.
JI Y X, XING K X, CEN K F, et al.A review on supercritical carbon dioxide Brayton cycle[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 1-9.
[2] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 Brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[3] 肖刚, 卢嘉冀, 周鑫, 等. 多能互补布雷顿循环中向心透平性能研究[J]. 太阳能学报, 2021, 42(6): 198-202.
XIAO G, LU J J, ZHOU X, et al.Characteristics of radial turbine for solar hybrid Brayton cycle system[J]. Acta energiae solaris sinica, 2021, 42(6): 198-202.
[4] 杨军, 赵全斌, 王晓坤, 等. 应用于钠冷快堆的超临界二氧化碳动力转换系统研究[J]. 原子能科学技术, 2020, 54(10): 1817-1824.
YANG J, ZHAO Q B, WANG X K, et al.Supercritical carbon dioxide power conversion system applied to sodium-cold fast reactor[J]. Atomic energy science and technology, 2020, 54(10): 1817-1824.
[5] 郑开云, 黄志强. 超临界CO2循环与燃煤锅炉集成技术研究[J]. 动力工程学报, 2018, 38(10): 843-848, 854.
ZHENG K Y, HUANG Z Q.Study on the integration of supercritical carbon dioxide cycle with coal-fired boiler[J]. Journal of Chinese Society of Power Engineering, 2018, 38(10): 843-848, 854.
[6] SAPIN P, SIMPSON M C, WHITE A J, et al.Lumped dynamic analysis and design of a high-performance reciprocating-piston expander[C]//30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. San Diego, California, USA, 2017.
[7] 刘晓超, 韩伟, 李仁年, 等. 叶片包角对螺旋离心式燃油泵空化性能影响[J]. 液压气动与密封, 2022, 42(9): 75-81.
LIU X C, HAN W, LI R N, et al.Influence of blade wrap angle on cavitation performance of spiral centrifugal fuel pump[J]. Hydraulics pneumatics & seals, 2022, 42(9): 75-81.
[8] 刘磊, 陈拥军, 任向前. 叶片包角对离心泵水力性能影响的研究[J]. 水泵技术, 2023(1): 6-10.
LIU L, CHEN Y J, REN X Q.Study on the influence of wrap angle on centrifugal pump hydraulic performance[J]. Pump technology, 2023(1): 6-10.
[9] 程效锐, 田龙, 李天鹏, 等. 叶片包角对恒扬程泵性能的影响[J]. 兰州理工大学学报, 2023, 49(1): 61-68.
CHENG X R, TIAN L, LI T P, et al.Influence of blade wrap angle on performance of constant head pump[J]. Journal of Lanzhou University of Technology, 2023, 49(1): 61-68.
[10] 丁观琪, 乐宇. 叶片包角对炉水循环泵水力特性的影响[J]. 中国设备工程, 2022(13): 106-109.
DING G Q, LE Y.Influence of blade wrap angle on hydraulic characteristics of boiler water circulating pump[J]. China plant engineering, 2022(13): 106-109.
[11] 杨泽江, 宋文武, 万伦. 叶片包角对中比转速离心泵水力振动的影响研究[J]. 水力发电, 2020, 46(4): 79-82, 88.
YANG Z J, SONG W W, WAN L.Study on the influence of blade wrap angle on hydraulic vibration of centrifugal pump[J]. Water power, 2020, 46(4): 79-82, 88.
[12] 刘宇, 冯进, 迟少林, 等. 基于Bezier曲线的低比转速离心泵叶片包角优选[J]. 长江大学学报(自然科学版), 2019, 16(8): 65-70.
LIU Y, FENG J, CHI S L, et al.The optimization of blade envelope angle of low specific speed centrifugal pump based on Bezier curve[J]. Journal of Yangtze University (natural science edition), 2019, 16(8): 65-70.
[13] 李新锐, 祝宝山, 李正贵, 等. 叶片包角对双蜗壳离心泵水力特性的影响[J]. 热能动力工程, 2021, 36(3): 35-42, 105.
LI X R, ZHU B S, LI Z G, et al.Influence of wrap angle on the hydraulic characteristics of double volute centrifugal pump[J]. Journal of engineering for thermal energy and power, 2021, 36(3): 35-42, 105.
[14] 孙玉伟, 陈晨, 秦天阳, 等. 高速S-CO2向心透平几何参数优化及变工况特性分析[J]. 中国电机工程学报, 2024, 44(6): 2319-2330.
SUN Y W, CHEN C, QIN T Y, et al.Geometric parameter optimization and off-design performance analysis of a high-speed S-CO2 radial-inflow turbine[J]. Proceedings of the CSEE, 2024, 44(6): 2319-2330.
[15] GIL A, MEDRANO M, MARTORELL I, et al.State of the art on high temperature thermal energy storage for power generation. Part 1: concepts, materials and modellization[J]. Renewable and sustainable energy reviews, 2010, 14(1): 31-55.
[16] LIU Y F, WANG Y J, ZHANG Y P, et al.Design and performance analysis of compressed CO2 energy storage of a solar power tower generation system based on the S-CO2 Brayton cycle[J]. Energy conversion and management, 2021, 249: 114856.
[17] 周奥铮, 宋健, 任晓栋, 等. 超临界二氧化碳布雷顿循环及其向心透平的设计与分析[J]. 工程热物理学报, 2019, 40(6): 1233-1239.
ZHOU A Z, SONG J, REN X D, et al.The study and analysis of supercritical carbon dioxide brayton cycle and its radial inflow turbine[J]. Journal of engineering thermophysics, 2019, 40(6): 1233-1239.
[18] CHO J, CHOI M, BAIK Y J, et al.Development of the turbomachinery for the supercritical carbon dioxide power cycle[J]. International journal of energy research, 2016, 40(5): 587-599.
基金
国家自然科学基金(52106010); 中央高校基本科研业务费专项资金(2022MS084)