基于Stackelberg主从博弈的微电网双层能量管理策略

闫群民, 贾宇飞, 马永翔, 宋潇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 650-658.

PDF(1466 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1466 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 650-658. DOI: 10.19912/j.0254-0096.tynxb.2023-1355

基于Stackelberg主从博弈的微电网双层能量管理策略

  • 闫群民, 贾宇飞, 马永翔, 宋潇
作者信息 +

TWO-TIER ENERGY MANAGEMENT STRATEGY FOR MICROGRID BASED ON STACKELBERG MASTER-SLAVE GAME

  • Yan Qunmin, Jia Yufei, Ma Yongxiang, Song Xiao
Author information +
文章历史 +

摘要

针对含高比例可再生能源的微电网中能量调度合理性和经济性问题,提出一种双层主从博弈的微电网能量管理策略,模型上层将微电网能量管理中心作为领导者,以售电利润最大化作为优化目标,通过调整购、售电价格策略来降低支出并提高收益,同时当微电网内部供需不平衡时与上级电网进行交互;下层模型将分布式电源运营商和用户作为跟随者,分别以最大售电收益和最小用电成本作为规划目标,通过改变内燃设备出力和用户的用能策略从而优化各主体的利益。经验证,所提模型在Stackelberg均衡框架下具备存在性与唯一性。通过应用优化后的遗传算法进行求解,成功得到各参与方的最优策略。最后经算例验证,所提双层博弈模型能最大化彼此利益,有效管理各方能源使用。

Abstract

Aiming at the rationality and economic issues of energy dispatch in microgrids containing high proportions of renewable energy, a microgrid energy management strategy based on a two-layer master-slave game is proposed. The upper layer of the model takes the microgrid energy management center as the leader to sell electricity. Profit maximization is the optimization goal, reducing expenditures and increasing profits by adjusting electricity purchase and sales price strategies. At the same time, it interacts with the upper-level power grid when the internal supply and demand of the microgrid are unbalanced; the lower-level model treats distributed power operators and users as followers, taking the maximum electricity sales revenue and the minimum electricity cost as the planning goals respectively, and optimizing the interests of each entity by changing the output of internal combustion equipment and the energy usage strategy of users. The existence and uniqueness of the Stackelberg equilibrium of the proposed model are proved and solved using an improved genetic algorithm to obtain the optimal strategy of each stakeholder. Finally, it is verified by numerical examples that the proposed two-layer game model can maximize mutual interests and effectively manage the energy use of all parties.

关键词

微电网 / 主从博弈 / 定价策略 / 能量管理 / 用能策略

Key words

microgrid / Stackelberg game / pricing strategy / energy management / energy usage strategy

引用本文

导出引用
闫群民, 贾宇飞, 马永翔, 宋潇. 基于Stackelberg主从博弈的微电网双层能量管理策略[J]. 太阳能学报. 2024, 45(12): 650-658 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1355
Yan Qunmin, Jia Yufei, Ma Yongxiang, Song Xiao. TWO-TIER ENERGY MANAGEMENT STRATEGY FOR MICROGRID BASED ON STACKELBERG MASTER-SLAVE GAME[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 650-658 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1355
中图分类号: TM73   

参考文献

[1] 刘永辉, 张显, 孙鸿雁, 等. 能源互联网背景下电力市场大数据应用探讨[J]. 电力系统自动化, 2021, 45(11): 1-10.
LIU Y H, ZHANG X, SUN H Y, et al.Discussion on application of big data in electricity market in background of energy internet[J]. Automation of electric power systems, 2021, 45(11): 1-10.
[2] 桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.
SANG B, ZHANG T, LIU Y J, et al.Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093.
[3] 蒋卓成, 刘继春, 魏昭彬, 等. 计及不同类型用户需求的售电公司投资、运营、运行一体化竞争力提升策略[J]. 电力自动化设备, 2023, 43(5): 243-251.
JIANG Z C, LIU J C, WEI Z B, et al.Competitiveness improving strategy for electricity retailer integrating with investment, marketing and operation considering needs of different types of users[J]. Electric power automation equipment, 2023, 43(5): 243-251.
[4] 刘晓峰, 高丙团, 李扬. 博弈论在电力需求侧的应用研究综述[J]. 电网技术, 2018, 42(8): 2704-2711.
LIU X F, GAO B T, LI Y.Review on application of game theory in power demand side[J]. Power system technology, 2018, 42(8): 2704-2711.
[5] 王秀丽, 闫璐, 刘豹, 等. 基于合作-非合作博弈的光储荷网协同运行策略[J]. 太阳能学报,2023, 44(5): 128-138.
WANG X L,YAN L,LIU B, et al.Cooperative operational strategies of photovoltaic,energy storage,load and power grid based on cooperative and non-cooperative game[J]. Acta energiae solaris sinica, 2023, 44(5): 128-138.
[6] 刘鑫蕊, 张明超, 王睿, 等. 基于一致性算法的城市微网群分层协同控制[J]. 电力系统自动化, 2022, 46(17): 65-73.
LIU X R, ZHANG M C, WANG R, et al.Hierarchical collaborative control of urban microgrid cluster based on consensus algorithm[J]. Automation of electric power systems, 2022, 46(17): 65-73.
[7] 徐熙林, 宋依群, 姚良忠, 等. 主动配电网源-荷-储分布式协调优化运行(一): 基于一致性理论的分布式协调控制系统建模[J]. 中国电机工程学报, 2018, 38(10): 2841-2848.
XU X L, SONG Y Q, YAO L Z, et al.Source-load-storage distributed coordinative optimization of AND(part Ⅰ): consensus based distributed coordination system modeling[J]. Proceedings of the CSEE, 2018, 38(10): 2841-2848.
[8] CHEN L J, ZHU X, CAI J L, et al.Multi-time scale coordinated optimal dispatch of microgrid cluster based on MAS[J]. Electric power systems research, 2019, 177: 105976.
[9] HE C, WU L, LIU T Q, et al.Robust co-optimization scheduling of electricity and natural gas systems via ADMM[J]. IEEE transactions on sustainable energy, 2017, 8(2): 658-670.
[10] 李本新, 刘振, 陈厚合, 等. 基于主从博弈的输配电网协同经济调度[J]. 电力系统保护与控制, 2022, 50(18): 131-140.
LI B X, LIU Z, CHEN H H, et al.Collaborative economic dispatch of coupled transmission and distribution networks based on the Stackelberg game[J]. Power system protection and control, 2022, 50(18): 131-140.
[11] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[12] 王芸芸, 马志程, 周强, 等. 兼顾公平性的多能源合作博弈优化调度[J]. 太阳能学报, 2022, 43(10): 482-492.
WANG Y Y, MA Z C, ZHOU Q, et al.Multi energy cooperative game optimal scheduling considering fairness[J]. Acta energiae solaris sinica, 2022, 43(10): 482-492.
[13] 李得民, 吴在军, 赵波. 多微电网系统的合作博弈模型及其优化调度策略[J]. 中国电机工程学报, 2022, 42(14): 5140-5153.
LI D M, WU Z J, ZHAO B.Cooperative game model and optimal dispatch strategy of multi-microgrid system[J]. Proceedings of the CSEE, 2022, 42(14): 5140-5153.
[14] 陈磊, 牛玉刚, 贾廷纲. 基于主从博弈的多微网能量调度策略[J]. 电力系统保护与控制, 2020, 48(19): 35-42.
CHEN L, NIU Y G, JIA T G.Multi-microgrid energy scheduling strategy based on master-slave game[J]. Power system protection and control, 2020, 48(19): 35-42.
[15] 林国营, 卢世祥, 郭昆健, 等. 基于主从博弈的电网公司需求响应补贴定价机制[J]. 电力系统自动化, 2020, 44(10): 59-67.
LIN G Y, LU S X, GUO K J, et al.Stackelberg game based incentive pricing mechanism of demand response for power grid corporations[J]. Automation of electric power systems, 2020, 44(10): 59-67.
[16] 吴建悍, 付保川, 费昭安, 等. 基于双层主从博弈的多微电网能源管理方法[J]. 控制工程, 2021, 28(6): 1229-1236.
WU J H, FU B C, FEI Z A, et al.Energy management method of multi-microgrid based on two-level master-slave game[J]. Control engineering of China, 2021, 28(6): 1229-1236.
[17] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5445.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5445.
[18] 吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018, 42(4): 142-150, 207.
WU L L, JING Z X, WU Q H, et al.Equilibrium strategies for integrated energy systems based on Stackelberg game model[J]. Automation of electric power systems, 2018, 42(4): 142-150, 207.
[19] 林凯骏, 吴俊勇, 郝亮亮, 等. 基于非合作博弈的冷热电联供微能源网运行策略优化[J]. 电力系统自动化, 2018, 42(6): 25-32.
LIN K J, WU J Y, HAO L L, et al.Optimization of operation strategy for micro-energy grid with CCHP systems based on non-cooperative game[J]. Automation of electric power systems, 2018, 42(6): 25-32.
[20] LIU N, HE L, YU X H, et al.Multiparty energy management for grid-connected microgrids with heat-and electricity-coupled demand response[J]. IEEE transactions on industrial informatics, 2018, 14(5): 1887-1897.
[21] 朱永胜, 杨俊林, 刘洲峰, 等. 基于博弈论的风-光-车容量配置研究[J]. 太阳能学报, 2020, 41(9): 95-103.
ZHU Y S,YANG J L,LIU Z F, et al.Research on capacity allocation of wind-PV-EV based on game theory[J]. Acta energiae solaris sinica, 2020, 41(9): 95-103.
[22] 练小林, 李晓露, 曹阳, 等. 考虑多主体主从博弈的多微网协调优化调度[J]. 电力系统及其自动化学报, 2021, 33(1): 85-93.
LIAN X L, LI X L, CAO Y, et al.Coordinated optimization scheduling of multi-microgrid considering multi-agent leader-follower game[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 85-93.
[23] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321.
LI P, WU D F, LI Y W, et al.Optimal dispatch of Multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321.
[24] 林凯骏, 吴俊勇, 刘迪, 等. 基于双层Stackelberg博弈的微能源网能量管理优化[J]. 电网技术, 2019, 43(3): 973-983.
LIN K J, WU J Y, LIU D, et al.Energy management optimization of micro energy grid based on hierarchical Stackelberg game theory[J]. Power system technology, 2019, 43(3): 973-983.

基金

国家自然科学基金面上项目(62176146); 陕西省教育厅重点科学研究计划(20JS018)

PDF(1466 KB)

Accesses

Citation

Detail

段落导航
相关文章

/