为实现储能系统(ESS)暂态电压支撑潜力的充分利用,提出一种用于储能系统电压暂降支撑的储能逆变器自适应控制策略。首先,深入分析储能系统双向运行下有功功率出力与无功功率容量的自适应变化机理;其次,提出一种考虑无功容量修正下自适应Q-V特性的并网逆变器控制策略,该策略根据储能双向运行下的有功功率出力实时调整无功容量,由无功功率容量确定自适应Q-V下垂系数,并网点电压波动量经自适应Q-V系数增益后,为功率外环提供无功功率参考值,实现储能无功容量的充分利用;最后,基于山东省某实际储能工程和PSCAD环境下的仿真分析,验证所提策略在三相接地故障和无功负荷扰动下能够有效降低电压暂降水平,显著提升系统暂态电压支撑能力,进而改善储能电站的暂态稳定性,保障系统安全可靠运行。
Abstract
To address the problem of lack of transient voltage support capability of the energy storage systems (ESS), an ESS control strategy considering the adaptive Q-V characteristic of ESS bi-directional operation is proposed. Firstly, the relationship between active power output and adaptive change of reactive power capacity under bi-directional operation of ESS is analyzed theoretically; secondly, an ESS control strategy based on adaptive Q-V characteristic is proposed, which adjusts the reactive power capacity in real time according to the active power output under bi-directional operation of ESS, determines the adaptive Q-V coefficient from the reactive power capacity, and the voltage fluctuation amount of PCC is increased by the adaptive Q-V coefficient. Finally, based on simulation analysis of a practical energy storage project in Shandong Province and PSCAD environment, the proposed strategy was verified. The results indicate that this strategy can effectively reduce the voltage transient level under three-phase ground fault and reactive load disturbance, significantly improve the transient voltage support capability of the system, and then improve the transient stability of the energy storage distribution system to ensure safe and reliable operation of the system.
关键词
储能 /
暂态支撑 /
电压控制 /
自适应控制 /
下垂控制
Key words
energy storage /
transient support /
voltage control /
adaptive control /
droop control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1799.
ZHAO D M, XU C Y, TAO R, et al.Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1799.
[2] 张耀文, 张政权, 刘庆想, 等. 新型双向储能变流器分析与研究[J]. 太阳能学报, 2022, 43(4): 82-89.
ZHANG Y W, ZHANG Z Q, LIU Q X, et al.Analysis and research of new bidirectional energy storage converter[J]. Acta energiae solaris sinica, 2022, 43(4): 82-89.
[3] 孙媛媛, 许庆燊, 马钊, 等. 数字化背景下新型电力系统谐波溯源关键技术[J]. 电力系统自动化, 2024, 48(6): 154-169.
SUN Y Y, XU Q S, MA Z, et al.Key technologies for harmonic source tracing in new power system in background of digitalization[J]. Automation of electric power systems, 2024, 48(6): 154-169.
[4] 蔡福霖, 胡泽春, 曹敏健, 等. 提升新能源消纳能力的集中式与分布式电池储能协同规划[J]. 电力系统自动化, 2022, 46(20): 23-32.
CAI F L, HU Z C, CAO M J, et al.Coordinated planning of centralized and distributed battery energy storage for improving renewable energy accommodation capability[J]. Automation of electric power systems, 2022, 46(20): 23-32.
[5] 陈浔俊, 耿光超, 江全元. 基于储能的风电机组故障电压穿越自适应协调控制[J]. 电力系统自动化, 2023, 47(7): 158-165.
CHEN X J, GENG G C, JIANG Q Y.Adaptive coordinated control of fault voltage ride-through for wind turbine based on energy storage[J]. Automation of electric power systems, 2023, 47(7): 158-165.
[6] 李朋. 储能电池用于改善电力系统暂态稳定的研究[D]. 长沙: 湖南大学, 2016.
LI P.Research on battery energy storage system for improving the transient stability of power system[D]. Changsha: Hunan University, 2016.
[7] 张凯歌. 基于下垂控制的混合储能系统功率分配策略研究[D]. 重庆: 重庆大学, 2021.
ZHANG K G.Research on power distribution strategy of hybrid energy storage system based on droop control[D]. Chongqing: Chongqing University, 2021.
[8] 刘军. 储能装置在提高电力系统暂态稳定性中的应用研究[D]. 北京: 华北电力大学, 2018.
LIU J.The application research of energy storage system on improving transient stability of power system[D]. Beijing: North China Electric Power University, 2018.
[9] 吴青峰, 褚晓林, 于少娟, 等. 基于改进型P-E下垂控制的低压交流微电网不同容量储能单元SOC均衡策略[J]. 太阳能学报, 2023, 44(4): 266-275.
WU Q F, CHU X L, YU S J, et al.SOC balancing strategy of low voltage AC microgrids with different capacities base on improved P-E droop control[J]. Acta energiae solaris sinica, 2023, 44(4): 266-275.
[10] 张家琪, 刘朋印, 谢小荣, 等. 适用于故障特性分析的锂离子电池储能电磁暂态建模方法[J]. 电力系统自动化, 2023, 47(7): 166-173.
ZHANG J Q, LIU P Y, XIE X R, et al.Electromagnetic transient modeling method of lithium-ion battery energy storage system for fault characteristic analysis[J]. Automation of electric power systems, 2023, 47(7): 166-173.
[11] 杨晓楠, 李洋, 史梁, 等. 光-储虚拟同步机多模式运行控制与改善储能系统寿命的选择性投退策略[J]. 太阳能学报, 2022, 43(4): 66-74.
YANG X N, LI Y, SHI L, et al.Multi-mode operating control of optical-storage virtual synchronizer and selectively plug in/out strategy for improving energy storage system lifetime[J]. Acta energiae solaris sinica, 2022, 43(4): 66-74.
[12] 刘远. 电网短路故障下并网逆变器的暂态稳定性分析及致稳控制策略[D]. 重庆: 重庆大学, 2021.
LIU Y.Transient stability analysis and enhancement control strategy of grid-connected inverter during grid faults[D]. Chongqing: Chongqing University, 2021.
[13] 王景钢, 刘轶. 考虑光伏逆变器电流裕度的主动配电网动态电压支撑策略[J]. 电力系统保护与控制, 2021, 49(6): 105-113.
WANG J G, LIU Y.Dynamic voltage support strategy for an active distribution network considering the current margin of a photovoltaic inverter[J]. Power system protection and control, 2021, 49(6): 105-113.
[14] 葛平娟, 涂春鸣, 肖凡, 等. 面向暂态稳定性能提升的VSG参数灵活控制策略[J]. 中国电机工程学报, 2022, 42(6): 2109-2124.
GE P J, TU C M, XIAO F, et al.Transient stability enhancement of a VSG based on flexible switching of control parameters[J]. Proceedings of the CSEE, 2022, 42(6): 2109-2124.
[15] 黄雪正. 基于下垂控制微网逆变器的功率调节与暂态特性优化策略[D]. 武汉: 华中科技大学, 2021.
HUANG X Z.Research on power regulation and transient characteristics optimization strategy od microgrid inverter based on droop control[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[16] KIM J, SEOK J K, MULJADI E, et al.Adaptive Q-V scheme for the voltage control of a DFIG-based wind power plant[J]. IEEE transactions on power electronics, 2016, 31(5): 3586-3599.
[17] 毛志宇, 李培强, 郭思源. 基于自适应时间尺度小波包和模糊控制的复合储能控制策略[J]. 电力系统自动化, 2023, 47(9): 158-165.
MAO Z Y, LI P Q, GUO S Y.Control strategy of composite energy storage based on wavelet packet with adaptive time scale and fuzzy control[J]. Automation of electric power systems, 2023, 47(9): 158-165.
[18] 李贤育, 姚良忠, 程帆, 等. 适用于海上风电送出的DR-MMC混合直流电网自适应下垂控制策略[J]. 电网技术, 2022, 46(8): 2871-2882.
LI X Y, YAO L Z, CHENG F, et al.Self-adaptive droop control strategy of DR-MMC hybrid DC grid for offshore wind power transmission[J]. Power system technology, 2022, 46(8): 2871-2882.
[19] 王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4): 12-19.
WANG K P, ZHANG X K, LIU C H, et al.Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated intelligent energy, 2022, 44(4): 12-19.
[20] 唐昆明, 王俊杰, 张太勤. 基于自适应下垂控制的微电网控制策略研究[J]. 电力系统保护与控制, 2016, 44(18): 68-74.
TANG K M, WANG J J, ZHANG T Q.Research on control strategy for microgrid based on adaptive droop control[J]. Power system protection and control, 2016, 44(18): 68-74.
[21] ZHANG B, TANG W, LIANG J, et al.EV integration-oriented DC conversion of AC low-voltage distribution networks and the associated adaptive control strategy[J]. IEEE transactions on transportation electrification, 2024, 10(1): 213-223.
[22] TIAN G Z, ZHENG Y D, LIU G C, et al.SOC balancing and coordinated control based on adaptive droop coefficient algorithm for energy storage units in DC microgrid[J]. Energies, 2022, 15(8): 2943.
[23] LI Y H, SUN Y Y, WANG Q Y, et al.Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads[J]. Applied energy, 2023, 329: 120298.
[24] YIN S L, SUN Y Y, XU Q S, et al.Multi-harmonic sources identification and evaluation method based on cloud-edge-end collaboration[J]. International journal of electrical power & energy systems, 2024, 156: 109681.
[25] 王伟. 可再生能源并网系统中电池储能系统特性及优化[D]. 济南: 山东大学, 2022.
WANG W.Characteristics and optimization of the battery energy storage system in the renewable energy grid-connected system[D]. Ji'nan: Shandong University, 2022.
基金
中国三峡新能源(集团)股份有限公司科研项目(37044032)