基于分层模型预测控制的风电场的电压恢复协调控制

毛钧毅, 古庭赟, 高源, 徐长宝, 林呈辉, 范强

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 407-415.

PDF(1214 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1214 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 407-415. DOI: 10.19912/j.0254-0096.tynxb.2023-1357

基于分层模型预测控制的风电场的电压恢复协调控制

  • 毛钧毅, 古庭赟, 高源, 徐长宝, 林呈辉, 范强
作者信息 +

VOLTAGE RECOVERY COORDINATED CONTROL OF WIND POWER FARM BASED ON HIERARCHICAL MODEL PREDICTIVE CONTROL

  • Mao Junyi, Gu Tingyun, Gao Yuan, Xu Changbao, Lin Chenghui, Fan Qiang
Author information +
文章历史 +

摘要

为协调风电场之间的无功输出,提出一种基于HMPC的电压控制方法,旨在提高大型风电场的高电压穿越和故障后电压恢复能力,并减少风电场控制器的计算任务。在风电场电压分层控制框架的基础上,首先从风电机组的单体控制模型出发建立风电场的整体控制模型,并采用HMPC方法滚动优化风电场输出无功功率;进一步,为提高大规模风电场电压优化问题的计算效率,采用基于交替方向乘子法的分布式求解方法。通过Matlab/Simulink搭建风电场仿真算例验证,结果表明所提HMPC方法相比传统控制方法在最小化风电机组端电压偏差和减少计算量方面具有更高的效率。

Abstract

In order to coordinate the reactive power output between wind farms, a voltage control strategy based on HMPC was proposed, which aims to improve the high voltage ride through and post fault voltage recovery capabilities of large wind farms, and reduce the computational tasks of wind farm controllers. Based on the hierarchical control framework of wind farm voltage, this paper first established the overall control model of the wind farm from the individual control model of the wind turbine, and used the HMPC method to rolling optimize the reactive power output of the wind farm; Furthermore, in order to improve the computational efficiency of voltage optimization problems in large-scale wind farms, a distributed solution method based on the alternating direction multiplier method was adopted. A wind farm simulation example was built using Matlab/Simulink for verification, and the results show that the proposed HMPC method has higher efficiency compared to traditional control methods in minimizing voltage deviation at the end of the wind turbine group and reducing computational complexity.

关键词

风电场 / 电压控制 / 无功功率 / 分层模型预测控制 / 交替方向乘子法

Key words

wind power farm / voltage control / reactive power / hierarchical model predictive control / alternating direction multiplier method

引用本文

导出引用
毛钧毅, 古庭赟, 高源, 徐长宝, 林呈辉, 范强. 基于分层模型预测控制的风电场的电压恢复协调控制[J]. 太阳能学报. 2024, 45(12): 407-415 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1357
Mao Junyi, Gu Tingyun, Gao Yuan, Xu Changbao, Lin Chenghui, Fan Qiang. VOLTAGE RECOVERY COORDINATED CONTROL OF WIND POWER FARM BASED ON HIERARCHICAL MODEL PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 407-415 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1357
中图分类号: TM614   

参考文献

[1] 万庆祝, 刘伟娜. 考虑风荷不确定性的大用户直购电鲁棒区间优化调度[J]. 太阳能学报, 2022, 43(7): 347-355.
WAN Q Z, LIU W N.Direct power purchase by large consumers considering wind load uncertainty robust interval optimal scheduling[J]. Acta energiae solaris sinica, 2022, 43(7): 347-355.
[2] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201.
CAO F, GUO T T, CHEN K Y, et al.Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[3] 李英量, 王康, 高兆迪, 等. 考虑风电接入的电压控制区域修正方法研究[J]. 太阳能学报, 2022, 43(9): 258-266.
LI Y L, WANG K, GAO Z D, et al.Research on modification method of voltage control area considering wind power connection[J]. Acta energiae solaris sinica, 2022, 43(9): 258-266.
[4] 周彦彤, 郝丽丽, 王昊昊, 等. 大容量风电场柔直并网系统的送/受端次同步振荡分析与抑制[J]. 电力自动化设备, 2020, 40(3): 100-106.
ZHOU Y T, HAO L L, WANG H H, et al.Analysis and suppression of SSO at sending/receiving end in VSC-HVDC system connected large-capacity wind farms[J]. Electric power automation equipment, 2020, 40(3): 100-106.
[5] 肖亮, 陈亦平, 伍阳阳, 等. 风电场快速调频技术的工程实践及关键参数取值[J]. 高电压技术, 2023, 49(6): 2536-2548.
XIAO L, CHEN Y P, WU Y Y, et al.Engineering practice and key parameter selection for fast frequency regulation technology of wind farms[J]. High voltage engineering, 2023, 49(6): 2536-2548.
[6] 李佳彬, 王淑红, 樊慧彬, 等. 无刷双馈发电机的高电压穿越控制策略研究[J]. 电机与控制学报, 2022, 26(12): 74-83.
LI J B, WANG S H, FAN H B, et al.HVRT control strategy of brushless doubly fed induction generator[J]. Electric machines and control, 2022, 26(12): 74-83.
[7] 李曼, 王冰, 曲立楠, 等. 基于暂态功率特性调整无功电流的高电压穿越控制策略[J]. 电力系统自动化, 2020, 44(6): 59-66.
LI M, WANG B, QU L N, et al.Control strategy of high voltage ride through for adjusting reactive current based on transient power characteristics[J]. Automation of electric power systems, 2020, 44(6): 59-66.
[8] 凌禹. 改进的双馈风电机组故障穿越控制策略研究[J]. 太阳能学报, 2022, 43(12): 312-319.
LING Y.Research on an improved fault ride through control strategy of DFIG-based wind turbine[J]. Acta energiae solaris sinica, 2022, 43(12): 312-319.
[9] 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43(2): 598-612.
WAN Q, XIA C J, GUAN L, et al.Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power system technology, 2019, 43(2): 598-612.
[10] 罗少杰, 朱玲. 电网电压骤升情况下双馈变流器控制策略研究[J]. 电力系统保护与控制, 2017, 45(24): 123-129.
LUO S J, ZHU L.Research on control strategy of double feed converter under grid voltage soared[J]. Power system protection and control, 2017, 45(24): 123-129.
[11] 韩平平, 张海天, 丁明, 等. 大规模高压直流输电系统闭锁故障下送端风电场高电压穿越的控制策略[J]. 电网技术, 2018, 42(4): 1086-1095.
HAN P P, ZHANG H T, DING M, et al.A coordinated HVRT strategy of large-scale wind power transmitted with HVDC system[J]. Power system technology, 2018, 42(4): 1086-1095.
[12] 崔挺, 李雪萍, 颜畅, 等. 基于模型预测控制的风电场故障穿越有功无功优化控制策略[J]. 电力系统保护与控制, 2022, 50(2): 12-20.
CUI T, LI X P, YAN C, et al.Active and reactive power optimization control strategy for wind farm fault ride-through based on model predictive control[J]. Power system protection and control, 2022, 50(2): 12-20.
[13] WEI J, LI C B, WU Q W, et al.MPC-based DC-link voltage control for enhanced high-voltage ride-through of offshore DFIG wind turbine[J]. International journal of electrical power & energy systems, 2021, 126: 106591.
[14] 刘其辉, 董楚然, 于一鸣. 双馈风电并网系统高频谐振机理及抑制策略[J]. 电力自动化设备, 2020, 40(9): 163-172.
LIU Q H, DONG C R, YU Y M.High frequency resonance mechanism and suppression strategy of doubly-fed wind power grid-connected system[J]. Electric power automation equipment, 2020, 40(9): 163-172.
[15] 王海军, 王磊. 基于分层MPC的风电场电压协调控制策略研究[J]. 电气传动, 2022, 52(1): 60-67, 80.
WANG H J, WANG L.Research on voltage coordination control strategy of wind farm based on hierarchical MPC[J]. Electric drive, 2022, 52(1): 60-67, 80.
[16] 王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4): 12-19.
WANG K P, ZHANG X K, LIU C H, et al.Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated intelligent energy, 2022, 44(4): 12-19.
[17] 王渝红, 廖逸犇, 宋雨妍, 等. 风电场内部分散式无功电压优化控制策略[J]. 高电压技术, 2022, 48(12): 5047-5056.
WANG Y H, LIAO Y B, SONG Y Y, et al.Distributed optimal control strategy of reactive power and voltage in wind farm[J]. High voltage engineering, 2022, 48(12): 5047-5056.
[18] 刘京波, 宋鹏, 吴林林, 等. 风电场无功电压控制系统运行现状分析及提升措施[J]. 中国电力, 2018, 51(8): 130-138.
LIU J B, SONG P, WU L L, et al.Operation situation analysis and improvement measures for automatic voltage control system of wind farms[J]. Electric power, 2018, 51(8): 130-138.
[19] LI Y J, XU Z, ZHANG J L, et al.Variable droop voltage control for wind farm[J]. IEEE transactions on sustainable energy, 2018, 9(1): 491-493.
[20] HUANG S, WU Q W, GUO Y F, et al.Bi-level decentralized active and reactive power control for large-scale wind farm cluster[J]. International journal of electrical power & energy systems, 2019, 111: 201-215.
[21] 秦世耀, 姜蓉蓉, 刘晋, 等. UHVDC闭锁引发风电场暂态过电压分析及HVRT协调控制[J]. 电力自动化设备, 2020, 40(6): 63-69, 1-4.
QIN S Y, JIANG R R, LIU J, et al. Transient overvoltage analysis of wind farm with UHVDC block and HVRT coordinated control[J]. Electric power automation equipment, 2020, 40(6): 63-69, 1-4.
[22] GE P D, CHEN B L, TENG F.Event-triggered distributed model predictive control for resilient voltage control of an islanded microgrid[J]. International journal of robust and nonlinear control, 2021, 31(6): 1979-2000.
[23] 马苗苗, 李钰梅, 崔婧, 等. 基于事件触发的互联电力系统分布式负荷频率预测控制[J]. 中国科学: 信息科学, 2023, 53(7): 1392-1403.
MA M M, LI Y M, CUI J, et al.Event-triggered distributed model predictive load frequency control of an interconnected power system[J]. Scientia sinica (informationis), 2023, 53(7): 1392-1403.
[24] GB/T 19963.1—2021, 《风电场接入电力系统技术规定: 第1部分: 陆上风电》[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system: Part 1: on shore wind power[S].
[25] 魏凤廷, 张海涛, 王秀丽, 等. 计及电压动态特性的虚拟同步机暂态稳定性分析[J]. 电网技术, 2024, 48(7): 2910-2918.
WEI F T, ZHANG H T, WANG X L, et al.Transient stability analysis of virtual synchronous generator considering voltage dynamic characteristics[J]. Power system technology, 2024, 48(7): 2910-2918.
[26] JU Y T, ZHANG Z F, WU W C, et al.A bi-level consensus ADMM-based fully distributed inverter-based volt/var control method for active distribution networks[J]. IEEE transactions on power systems, 2022, 37(1): 476-487.

基金

贵州省科技厅支撑计划(黔科合支撑[2022]一般013)

PDF(1214 KB)

Accesses

Citation

Detail

段落导航
相关文章

/