为增强以银为背电极的正置结构有机-无机金属卤化物钙钛矿太阳电池(PSCs)的长期稳定性,研究利用射频磁控溅射技术在氧化钼层与银背电极之间沉积一层铟锡氧化物(ITO)来对PSCs进行内封装的技术。为防止ITO层溅射对下方已沉积的钙钛矿层和有机空穴传输层造成损伤,研究ITO层溅射功率和厚度对PSCs光伏性能的影响,获得优化的ITO层制备工艺,发现在ITO层溅射功率为30 W、厚度为40 nm时所制备的PSCs光伏性能最优。为进一步提升PSCs性能,对比溅射法和热蒸发法沉积银背电极对PSCs性能的影响,发现与蒸发法相比,采用溅射银背电极的PSCs光伏性能更佳,其光电转换效率可达到17.86%。PSCs光伏性能的长期稳定性测试和X射线衍射结果分析表明,溅射ITO阻隔层的插入可有效抑制钙钛矿层中的卤素离子与银背电极之间的扩散反应,在不降低PSCs效率的同时可显著改善PSCs稳定性,所制备的PSCs在干燥空气中存放4500 h后仍能保持初始效率的95%。
Abstract
To enhance the long-term stability of organic-inorganic metal halide perovskite solar cells (PSCs) with silver as the rear electrode, the technique of depositing a indium tin oxide (ITO) layer between the molybdenum oxide layer and the silver back electrode using radio frequency magnetron sputtering for inner encapsulation of PSCs has been studied. To prevent damage to the pre-deposited perovskite layer and organic hole transport layer caused by the ITO layer sputtering, the effects of the sputtering power and the thickness of ITO layer on the photovoltaic performance of PSCs are studied, and an optimized ITO layer preparation process is obtained. It is found that the photovoltaic performance of PSCs is optimal when the sputtering power and the thickness of ITO layer is 30 W and 40 nm, respectively. To further improve device performance, the effects of sputtering and thermal evaporation methods for depositing silver rear electrodes on device performance are analyzed. It is found that compared with thermal evaporation method, PSCs with sputtering silver rear electrode has better photovoltaic performance and achieves a power conversion efficiency of 17.86%. The long-term stability testing and X-ray diffraction analysis of the device indicate that the insertion of the sputtered ITO barrier layer can effectively suppress the diffusion reaction between halogen ions in the perovskite layer and the silver back electrode, significantly improving the stability of the PSCs without reducing the device efficiency. After being stored in dry air for 4500 hours, the prepared PSCs with the sputtered ITO barrier layer can still maintain 95% of its initial efficiency.
关键词
钙钛矿太阳电池 /
稳定性 /
溅射 /
电极 /
封装
Key words
perovskite solar cells /
stability /
sputtering /
electrodes /
encapsulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI D Y, ZHANG D Y, LIM K S, et al.A review on scaling up perovskite solar cells[J]. Advanced functional materials, 2021, 31(12): 2008621.
[2] HAMUKWAYA S L, HAO H Y, ZHAO Z Y, et al.A review of recent developments in preparation methods for large-area perovskite solar cells[J]. Coatings, 2022, 12(2): 252.
[3] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[4] KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[5] NREL, PIP & NREL data. Cell efficiency data table[EB/OL].https://www.nrel.gov/pv/assets/docs/cell-efficiency-data-table.xlsx (Last accessed: August 8, 2023)
[6] SHARMA R, SHARMA A, AGARWAL S, et al.Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review[J]. Solar energy, 2022, 244: 516-535.
[7] LEE H, LEE C.Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode[J]. Advanced energy materials, 2018, 8(11): 1702197.
[8] LI J W, DONG Q S, LI N, et al.Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells[J]. Advanced energy materials, 2017, 7(14): 1602922.
[9] BOYD C C, CHEACHAROEN R, BUSH K A, et al.Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells[J]. ACS energy letters, 2018, 3(7): 1772-1778.
[10] WAHL T, HANISCH J, AHLSWEDE E.Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells[J]. Journal of physics D: applied physics, 2018, 51(13): 135502.
[11] MO Y P, SHI J, ZHOU P, et al.Efficient planar perovskite solar cells via a sputtered cathode[J]. Solar RRL, 2019, 3(9): 1900209.
[12] SUN Y M, TAKACS C J, COWAN S R, et al.Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer[J]. Advanced materials, 2011, 23(19): 2226-2230.
[13] BEERBOM M M, LÄGEL B, CASCIO A J, et al. Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films[J]. Journal of electron spectroscopy and related phenomena, 2006, 152(1/2): 12-17.
[14] 江雨童, 陈东, 孙泽华, 等. ITO/Metal/ITO叠层电极中Cu/Ag对钙钛矿太阳电池电极性能的影响[J]. 太阳能学报, 2022, 43(9): 83-87.
JIANG Y T, CHEN D, SUN Z H, et al.Effect of Cu/Ag in ITO/Metal/ITO laminated electrode on performance of perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 83-87.
[15] DASGUPTA B, GOH W P, OOI Z E, et al.Enhanced extraction rates through gap states of molybdenum oxide anode buffer[J]. The journal of physical chemistry C, 2013, 117(18): 9206-9211.
[16] LIN L J, GU C J, ZHU J Y, et al.Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode[J]. Journal of materials science, 2019, 54(10): 7789-7797.
[17] 张海川, 王康旭, 黄跃龙, 等. 氧化钼在半透明双面钙钛矿太阳电池中的应用[J]. 太阳能学报, 2021, 42(9): 120-124.
ZHANG H C, WANG K X, HUANG Y L, et al.Application of molybdenum oxide in semi-transparent bifacial perovskite solar cells[J]. Acta energiae solaris sinica, 2021, 42(9): 120-124.
[18] BARNA P B, ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J]. Thin solid films, 1998, 317(1/2): 27-33.
[19] SHIGESATO Y, PAINE D C.A microstructural study of low resistivity tin-doped indium oxide prepared by d.c. magnetron sputtering[J]. Thin solid films, 1994, 238(1): 44-50.
[20] WEI Z F, SMITH B, DE ROSSI F, et al.Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoOx/ITO/Ag/ITO electrode[J]. Journal of materials chemistry C, 2019, 7(35): 10981-10987.
[21] LIU P Y, WANG W, LIU S M, et al.Fundamental understanding of photocurrent hysteresis in perovskite solar cells[J]. Advanced energy materials, 2019, 9(13): 1803017.
基金
河北省自然科学基金(E2021201014)