基于PMU和FI协同的配电网故障测距方法

张百驰, 林俊杰, 江昌旭, 邵振国, 方陈, 魏新迟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 659-666.

PDF(1156 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1156 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 659-666. DOI: 10.19912/j.0254-0096.tynxb.2023-1367

基于PMU和FI协同的配电网故障测距方法

  • 张百驰1, 林俊杰1, 江昌旭1, 邵振国1, 方陈2, 魏新迟2
作者信息 +

FAULT LOCATION METHOD FOR DISTRIBUTION NETWORK BASED ON PMU AND FI

  • Zhang Baichi1, Lin Junjie1, Jiang Changxu1, Shao Zhenguo1, Fang Chen2, Wei Xinchi2
Author information +
文章历史 +

摘要

基于故障指示器(FI)和同步相量测量单元(PMU)两种量测设备的特点和优势,提出一种基于PMU和FI协同的配电网故障测距方法。首先,利用电力系统网络拓扑结构建立关系矩阵,根据FI的报警信息以及故障电流流向建立报警向量,由两者对应关系求解故障区段。其次,利用PMU配置节点量测数据与线路参数信息推算故障区段的节点电量数据。最后,对故障区段外电路进行等效,根据区段节点数据的完整性,选择单端阻抗法或双端阻抗法求解故障距离,实现故障精确定位。仿真试验表明,针对短路故障情况,所提方法基本不受故障位置、故障类型、过渡电阻的影响,具有较高的测距精度。

Abstract

This article proposes a fault location method for distribution networks based on the characteristics and advantages of two measurement devices: fault indicators (FIs) and phasor measurement units (PMUs). Firstly, a relationship matrix is established based on the power system's network topology. The alarm vector is constructed using the alarm information from the FIs and the fault current direction, and the fault section is determined by solving the correspondence between the two. Secondly, the data of the voltage and current at both ends of the fault section are estimated by combining the PMU-configured node data and line parameters. Finally, the external circuits of the fault section are equivalently represented, and depending on the completeness of the node data, either the single-end impedance method or the double-end impedance method is selected to determine the fault distance, achieving accurate fault location. The simulation results show that the proposed method achieves high accuracy in short-circuit fault location under different fault locations, fault types, and transition resistance values.

关键词

配电网 / 故障测距 / 同步相量测量单元 / 故障区段定位 / 故障指示器

Key words

power distribution networks / fault location / phasor measurement units / fault section location / fault indicators

引用本文

导出引用
张百驰, 林俊杰, 江昌旭, 邵振国, 方陈, 魏新迟. 基于PMU和FI协同的配电网故障测距方法[J]. 太阳能学报. 2024, 45(12): 659-666 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1367
Zhang Baichi, Lin Junjie, Jiang Changxu, Shao Zhenguo, Fang Chen, Wei Xinchi. FAULT LOCATION METHOD FOR DISTRIBUTION NETWORK BASED ON PMU AND FI[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 659-666 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1367
中图分类号: TM726   

参考文献

[1] 詹惠瑜, 刘科研, 盛万兴, 等. 有源配电网故障诊断与定位方法综述及展望[J]. 高电压技术, 2023, 49(2): 660-671.
ZHAN H Y, LIU K Y, SHENG W X, et al.Review and prospects of fault diagnosis and location method in active distribution network[J]. High voltage engineering, 2023, 49(2): 660-671.
[2] 何西, 涂春鸣, 李培强. 智能配电网多源数据融合研究[J]. 南方电网技术, 2019, 13(4): 42-47.
HE X, TU C M, LI P Q.Research on multi-source data fusion for smart distribution network[J]. Southern power system technology, 2019, 13(4): 42-47.
[3] 马士聪, 高厚磊, 徐丙垠, 等. 配电网故障定位技术综述[J]. 电力系统保护与控制, 2009, 37(11): 119-124.
MA S C, GAO H L, XU B Y, et al.A survey of fault location methods in distribution network[J]. Power system protection and control, 2009, 37(11): 119-124.
[4] 王晓东, 王永浩, 刘颖明, 等. 海上风电场集电多分支线路故障区段定位方法[J]. 太阳能学报, 2023, 44(1): 163-170.
WANG X D, WANG Y H, LIU Y M, et al.Fault branch location for multi-branch collection lines of offshore wind farm[J]. Acta energiae solaris sinica, 2023, 44(1): 163-170.
[5] 唐金锐, 尹项根, 张哲, 等. 配电网故障自动定位技术研究综述[J]. 电力自动化设备, 2013, 33(5): 7-13.
TANG J R, YIN X G, ZHANG Z, et al.Survey of fault location technology for distribution networks[J]. Electric power automation equipment, 2013, 33(5): 7-13.
[6] 李卫国, 许文文, 乔振宇, 等. 基于暂态零序电流凹凸特征的配电网故障区段定位方法[J]. 电力系统保护与控制, 2020, 48(10): 164-173.
LI W G, XU W W, QIAO Z Y, et al.Fault section location method for a distribution network based on concave and convex characteristics of transient zero sequence current[J]. Power system protection and control, 2020, 48(10): 164-173.
[7] 邢晓东, 石访, 张恒旭, 等. 基于同步相量的有源配电网自适应故障区段定位方法[J]. 电工技术学报, 2020, 35(23): 4920-4930.
XING X D, SHI F, ZHANG H X, et al.Adaptive section location method for active distribution network based on synchronized phasor measurement[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4920-4930.
[8] TENG J H, HUANG W H, LUAN S W.Automatic and fast faulted line-section location method for distribution systems based on fault indicators[J]. IEEE transactions on power systems, 2014, 29(4): 1653-1662.
[9] XIE X F, GAO Z J, ZHANG J L, et al.A fault location method based on cause-effect network in active distribution network[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China, 2019: 837-842.
[10] 丁佳立, 王昕, 郑益慧, 等. 利用线路中点电流检测的改进单端行波故障测距方法[J]. 高电压技术, 2020, 46(5): 1814-1822.
DING J L, WANG X, ZHENG Y H, et al.Improved method for fault location of single-ended traveling-wave using line midpoint current measurement[J]. High voltage engineering, 2020, 46(5): 1814-1822.
[11] 靳维, 陆于平. 基于双端弱同步的配电网行波测距方法[J]. 电力自动化设备, 2018, 38(8): 102-109.
JIN W, LU Y P.Fault location method based on traveling wave with dual-terminal weak synchronization for distribution network[J]. Electric power automation equipment, 2018, 38(8): 102-109.
[12] 杜刚, 刘迅, 苏高峰. 基于FTU和 “S” 信号注入法的配电网接地故障定位技术的研究[J]. 电力系统保护与控制, 2010, 38(12): 73-76.
DU G, LIU X, SU G F.Research on technology of grounding fault location combining FTU and “S” signal injecting method in distribution grid[J]. Power system protection and control, 2010, 38(12): 73-76.
[13] 杨理斌, 喻锟, 曾祥君, 等. 基于注入电流调控的含分布式电源配电网消弧与选线方法[J]. 太阳能学报, 2023, 44(5): 113-120.
YANG L B, YU K, ZENG X J, et al.Arc suppression and line selection method for distribution network with distributed generation based on injection current regulation[J]. Acta energiae solaris sinica, 2023, 44(5): 113-120.
[14] 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45(6): 2113-2121.
LI J W, WANG X J, HE J H, et al.Distribution network fault location based on graph attention network[J]. Power system technology, 2021, 45(6): 2113-2121.
[15] MIRSHEKALI H, DASHTI R, KESHAVARZ A, et al.Machine learning-based fault location for smart distribution networks equipped with micro-PMU[J]. Sensors, 2022, 22(3): 945.
[16] ERIKSSON L, SAHA M M, ROCKEFELLER G D. An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remote-end infeed[J]. IEEE power engineering review, 1985, PER-5(2): 44.
[17] 刘永军, 刘敏. 配电网下基于PMU量测的混合故障测距法[J]. 电测与仪表, 2016, 53(17): 39-43.
LIU Y J, LIU M.Research of hybrid fault location method based on PMU for distribution networks[J]. Electrical measurement & instrumentation, 2016, 53(17): 39-43.
[18] PHADKE A G, BI T S.Phasor measurement units, WAMS, and their applications in protection and control of power systems[J]. Journal of modern power systems and clean energy, 2018, 6(4): 619-629.
[19] 王小君, 任欣玉, 和敬涵, 等. 基于μPMU相量信息的配电网络故障测距方法[J]. 电网技术, 2019, 43(3): 810-817.
WANG X J, REN X Y, HE J H, et al.Distribution network fault location based on μPMU information[J]. Power system technology, 2019, 43(3): 810-817.
[20] 葛维春, 张硕, 张艳军, 等. 基于μPMU同步量测数据的配电网故障定位方法[J]. 电力系统保护与控制, 2020, 48(4): 39-46.
GE W C, ZHANG S, ZHANG Y J, et al.A novel method for fault location of distribution network based on μPMU synchronized measurement data[J]. Power system protection and control, 2020, 48(4): 39-46.
[21] REN J, VENKATA S S, SORTOMME E.An accurate synchrophasor based fault location method for emerging distribution systems[J]. IEEE transactions on power delivery, 2014, 29(1): 297-298.
[22] 陶维青, 肖松庆, 秦明辉, 等. 含有限PMU的主动配电网故障定位[J]. 太阳能学报, 2022, 43(4): 112-120.
TAO W Q, XIAO S Q, QIN M H, et al.Fault location of active distribution network with limited PMU[J]. Acta energiae solaris sinica, 2022, 43(4): 112-120.
[23] SHETA A N, ABDULSALAM G M, ELADL A A.Online tracking of fault location in distribution systems based on PMUs data and iterative support detection[J]. International journal of electrical power and energy systems, 2021, 128: 106793.
[24] USMAN M U, FARUQUE M O.Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data[J]. IET generation, transmission & distribution, 2018, 12(21): 5824-5833.
[25] KHORRAM E, TALESHIAN JELODAR M.PMU placement considering various arrangements of lines connections at complex buses[J]. International journal of electrical power & energy systems, 2018, 94: 97-103.

基金

福建省自然科学基金(2021J05134); 新型电力系统运行与控制全国重点实验室开放基金(SKLD23KZ06)

PDF(1156 KB)

Accesses

Citation

Detail

段落导航
相关文章

/