高海拔环境下空冷质子交换膜燃料电池性能研究

石强强, 刘宏波, 秦江, 刘海东, 沈轶岭, 谢佳乐

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 345-352.

PDF(2367 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2367 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 345-352. DOI: 10.19912/j.0254-0096.tynxb.2023-1373

高海拔环境下空冷质子交换膜燃料电池性能研究

  • 石强强1, 刘宏波1, 秦江2, 刘海东2, 沈轶岭2, 谢佳乐3
作者信息 +

PERFORMANCE ANALYSIS OF AIR-COOLED PROTON EXCHANGE MEMBRANE FUEL CELL AT HIGH ALTITUDE ENVIRONMENT

  • Shi Qiangqiang1, Liu Hongbo1, Qin Jiang2, Liu Haidong2, Shen Yiling2, Xie Jiale3
Author information +
文章历史 +

摘要

高海拔地区低温和低氧环境往往会对质子交换膜燃料电池(PEMFC)无人机(UAV)的启动和巡航工作造成困难。为研究环境变量对不同海拔高度PEMFC的性能影响,分别在200、3000、4000 m高度下对燃料电池系统进行测试和分析。结果表明,随着海拔高度的上升,PEMFC系统输出性能不断降低。在3000 m高度低湿条件下采取阴极进气加热,电堆最大电流密度由0.38 A/cm2下降至0.33 A/cm2。而在4000 m高度夜间相对高湿环境下,进气预热后电堆最大电流密度由0.32 A/cm2提升至0.36 A/cm2。同时,结合系统仿真分析,建立无人机PEMFC在不同海拔环境下的性能预测模型,电池性能预测与实验数据误差不超过5%,可用于准确预评估机载电池的性能。

Abstract

Low temperature and oxygen content tend to cause difficulties for the unmanned aerial vehicle (UAV) powered by proton exchange membrane fuel cell (PEMFC) during the start-up and cruise stages at high altitude. In order to study the impact of environmental variable on the PEMFC performance at various altitudes, the system was tested and analyzed at 200 m, 3000 m and 4000 m respectively. The results showed that the power output of the PEMFC system decreases continuously as the altitude rises. The maximum current density reduced from 0.38 A/cm2 to 0.33 A/cm2 once intake preheating was used at cathode side at 3000 m altitude due to the lower humidity. Nevertheless, the maximum current density of the stack increased from 0.32 A/cm2 to 0.36 A/cm2 after intake air preheating at night of 4000 m with higher environment humidity. At the same time, the relatively precise model was developed to predict and estimate the PEMFC output performance on UAV under various altitudes based on the system simulation method with the maximum error below 5%, which was useful to accurately evaluate the cell performance.

关键词

质子交换膜燃料电池 / 电流密度 / 含水量 / 氧含量 / 性能评估

Key words

proton exchange membrane fuel cell / current density / water content / oxygen content / performance evaluation

引用本文

导出引用
石强强, 刘宏波, 秦江, 刘海东, 沈轶岭, 谢佳乐. 高海拔环境下空冷质子交换膜燃料电池性能研究[J]. 太阳能学报. 2025, 46(1): 345-352 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1373
Shi Qiangqiang, Liu Hongbo, Qin Jiang, Liu Haidong, Shen Yiling, Xie Jiale. PERFORMANCE ANALYSIS OF AIR-COOLED PROTON EXCHANGE MEMBRANE FUEL CELL AT HIGH ALTITUDE ENVIRONMENT[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 345-352 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1373
中图分类号: TK91   

参考文献

[1] SHARAF O Z, ORHAN M F.An overview of fuel cell technology: fundamentals and applications[J]. Renewable and sustainable energy reviews, 2014, 32: 810-853.
[2] 冯文, 王淑娟, 倪维斗, 等. 燃料电池汽车氢能系统的环境、经济和能源评价[J]. 太阳能学报, 2003, 24(3): 394-400.
FENG W, WANG S J, NI W D, et al.Environmental, economic and energy assessment of hydrogen energy system about fuel cell vehicles[J]. Acta energiae solaris sinica, 2003, 24(3): 394-400.
[3] XIE R Y, MA R, PU S C, et al.Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure[J]. Energy and AI, 2020, 2: 100017.
[4] CHEN X, ZHOU H W, LI W B, et al.Multi-criteria assessment and optimization study on 5kW PEMFC based residential CCHP system[J]. Energy conversion and management, 2018, 160: 384-395.
[5] SHI X L, GHOLAMALIZADEH E, MOHEIMANI R.Applying a micromechanics approach for predicting thermal conducting properties of carbon nanotube-metal nanocomposites[J]. Journal of alloys and compounds, 2019, 789: 528-536.
[6] CHEN X, FANG Y, LIU Q X, et al.Temperature and voltage dynamic control of PEMFC Stack using MPC method[J]. Energy reports, 2022, 8: 798-808.
[7] SALVA J A, IRANZO A, ROSA F, et al.Experimental validation of the polarization curve and the temperature distribution in a PEMFC stack using a one dimensional analytical model[J]. International journal of hydrogen energy, 2016, 41(45): 20615-20632.
[8] HICKNER M A, FUJIMOTO C H, CORNELIUS C J.Transport in sulfonated poly(phenylene)s: proton conductivity, permeability, and the state of water[J]. Polymer, 2006, 47(11): 4238-4244.
[9] LIU X, GUO H, YE F, et al.Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells[J]. Electrochimica acta, 2007, 52(11): 3607-3614.
[10] 李会平, 熊锦琳, 林祎恺. PEMFC电流密度与氧气分压分布的数值研究[J]. 电池工业, 2020, 24(3): 137-141.
LI H P, XIONG J L, LIN Y K.Numerical study of local current density and oxygen partial pressure distributions for PEM cell fuel[J]. Chinese battery industry, 2020, 24(3): 137-141.
[11] 王金龙, 孙福龙, 杜新. 质子交换膜燃料电池阴极气液两相流模型的建模及仿真[J]. 长春理工大学学报(自然科学版), 2014, 37(3): 83-86.
WANG J L, SUN F L, DU X.Research on two-phase flow modeling and simulation of proton exchange membrane fuel cell[J]. Journal of Changchun University of Science and Technology (natural science edition), 2014, 37(3): 83-86.
[12] 苗宇航. 风冷质子交换膜燃料电池运行特性研究[D]. 武汉: 华中科技大学, 2021.
MIAO Y H.Study on operation characteristics of air-cooled proton exchange membrane fuel cell[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[13] SHEN Q, HOU M, YAN X Q, et al.The voltage characteristics of proton exchange membrane fuel cell (PEMFC) under steady and transient states[J]. Journal of power sources, 2008, 179(1): 292-296.
[14] YANG Z R, DU Q, JIA Z W, et al.Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model[J]. Energy, 2019, 183: 462-476.
[15] OKSUZTEPE E, BAYRAK Z U, KAYA U.Effect of flight level to maximum power utilization for PEMFC/supercapacitor hybrid uav with switched reluctance motor thruster[J]. International journal of hydrogen energy, 2023, 48(29): 11003-11016.
[16] GONG C Y, XING L, LIANG C, et al.Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle[J]. Renewable energy, 2022, 188: 1094-1104.
[17] 鲜亮, 肖建, 贾俊波, 等. 质子交换膜燃料电池冷启动模型研究[J]. 太阳能学报, 2011, 32(12): 1857-1863.
XIAN L, XIAO J, JIA J B, et al.Study on cold-start modeling of proton exchange membrane fuel cell[J]. Acta energiae solaris sinica, 2011, 32(12): 1857-1863.
[18] SONG X, XIN L J.Research on key technologies of standard atmosphere database[C]//2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing. Beijing, 2008: 1497-1500.
[19] LEE S H, ALDREDGE R C.Analytic approach to determine optimal conditions for maximizing altitude of sounding rocket: flight in standard atmosphere[J]. Aerospace science and technology, 2015, 46: 374-385.
[20] 李奇, 陈维荣, 贾俊波, 等. 质子交换膜燃料电池动态响应建模与仿真研究[J]. 系统仿真学报, 2009, 21(11): 3443-3447.
LI Q, CHEN W R, JIA J B, et al.Modeling and dynamic response simulation of fuel cell[J]. Journal of system simulation, 2009, 21(11): 3443-3447.
[21] 翟双, 周苏, 孙澎涛. 质子交换膜燃料电池仿真方法及若干现象研究[M]. 上海: 同济大学出版社, 2018: 11-12.
ZHAI S, ZHOU S, SUN P T.Study of numerical methods and several typical phenomena of proton exchange membrane fuel cell[M]. Shanghai: Tongji University Press, 2018: 11-12.

基金

国家自然科学基金(51706190); 南充市-西南石油大学市校科技战略合作专项资金(23XNSYSX0008)

PDF(2367 KB)

Accesses

Citation

Detail

段落导航
相关文章

/