在海上升压站导管架钢管桩基础水下沉桩施工过程中,受导管架套筒喇叭口与打桩锤锤帽干涉影响,需在钢管桩与锤帽之间增设送桩器作为替打工装。送桩器长期承受大能量锤击载荷,使用寿命尚不明确。针对该问题,以某海上升压站导管架沉桩施工为研究背景, 基于一维纵波理论对送桩器冲击应力进行求解,通过使用Solidworks软件建立送桩器模型,对其在承受不同周期性冲击载荷下的应力分布及疲劳损坏情况进行数值模拟,并通过高应变监测设备获取结构实时应力数据进行对比。结果表明:送桩器在不同冲击能量下的最大应力位置相同,送桩器疲劳寿命与冲击能量呈反比例指数关系,送桩器模拟应力值与高应变监测应力值的误差在考虑能量消散比例后仅为2.77%。
Abstract
Due to the interference between jacket sleeve and hammer during underwater piling of offshore booster station, a pile follower should be installed between pipe pile and hammer. The service life of pile follower, which has been subjected to large energy hammer load for a long time, is not clear as yet. To solve this problem, the piling of an offshore booster station jacket is taken as the research background, the impact stress of pile follower is solved based on one-dimensional longitudinal wave theory, and pile follower model is established by using Solidworks software. The stress distribution and fatigue damage of the pile follower under periodic impact load are simulated numerically, and the real-time stress data of pile follower is obtained by high-strain monitoring equipment. The results show that the maximum stress position of pile follower is same under different impact energy, and the fatigue life of pile follower is inversely proportional to impact energy. The error between simulated stress value of pile follower and high-strain monitoring stress value is only 2.77% after considering energy dissipation.
关键词
海上风电 /
送桩器 /
冲击应力 /
疲劳分析 /
数值模拟
Key words
offshore wind power /
pile follower /
impact stress /
fatigue analysis /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 卢正帅, 林红阳, 易杨. 风电发展现状与趋势[J]. 中国科技信息, 2017(2): 91-92.
LU Z S, LIN H Y, YI Y.Present situation and trend of wind power development[J]. China science and technology information, 2017(2): 91-92.
[2] 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理, 2020(11): 21-22.
WANG Y P.Study on the current status and development trends of wind power generation[J]. Electric power equipment management, 2020(11): 21-22.
[3] 闵兵, 王梦川, 傅小荣, 等. 海上风电是风电产业未来的发展方向: 全球及中国海上风电发展现状与趋势[J]. 国际石油经济, 2016, 24(4): 29-36.
MIN B, WANG M C, FU X R, et al.Offshore wind power as the development trend of wind industry: development of global offshore wind power[J]. International petroleum economics, 2016, 24(4): 29-36.
[4] 刘桢, 俞炅旻, 黄德财, 等. 海上风电发展研究[J]. 船舶工程, 2020, 42(8): 11-16.
LIU Z, YU J M, HUANG D C, et al.Research on the development of offshore wind power[J]. Ship engineering, 2020, 42(8): 11-16.
[5] 傅圣航, 张伟, 张浦阳. 大型海上风电结构物运输过程运动响应分析[J]. 太阳能学报, 2023, 44(7): 496-503.
FU S H, ZHANG W, ZHANG P Y.Motion response analysis of large offshore structures during transportation[J]. Acta energiae solaris sinica, 2023, 44(7): 496-503.
[6] 付德义, 李婷, 王安庆, 等. 风浪耦合作用下海上风电机组载荷特性研究[J]. 太阳能学报, 2021, 42(9): 256-262.
FU D Y, LI T, WANG A Q, et al.Research on load characteristics of offshore wind turbine coupling with wind and wave[J]. Acta energiae solaris sinica, 2021, 42(9): 256-262.
[7] 管鹏程, 王宏. 海上升压站先桩法导管架水下施工技术[J]. 船舶工程, 2021, 43(增刊1): 127-129,133.
GUAN P C, WANG H.Underwater construction technology of conduit frame by pile-first method for offshore booster station[J]. Ship engineering, 2021, 43(Sup 1): 127-129,133.
[8] 杨昊, 王凤云, 李钦朋, 等. 海上风电导管架式基础钢管桩沉桩技术[J]. 水电与新能源, 2023, 37(3): 69-73.
YANG H, WANG F Y, LI Q P, et al.Driving technology of the steel pipe piles for jacket pile foundation in offshore wind power projects[J]. Hydropower and new energy, 2023, 37(3): 69-73.
[9] 时学海. 海上风电大直径钢管桩沉桩施工技术[J]. 铁道建筑技术, 2019(12): 153-158.
SHI X H.Pile driving construction technology of large diameter steel pipe pile for offshore windpower[J]. Railway construction technology, 2019(12): 153-158.
[10] 王芳辉, 王浩, 张志浩, 等. 30 m水深裙桩式导管架海上安装关键技术研究[J]. 石油工程建设, 2022, 48(6): 64-69.
WANG F H, WANG H, ZHANG Z H, et al.Research on key technology for offshore installation of skirt pile-type jackets in 30 m water depth[J]. Petroleum engineering construction, 2022, 48(6): 64-69.
[11] 孙要兵. 液压动力沉桩机冲击机械系统动力学建模与分析[D]. 湘潭: 湖南科技大学, 2012.
SUN Y B.Dynamic modeling and analysis of impact mechanical system of hydraulic dynamic pile driver[D]. Xiangtan: Hunan University of Science and Technology, 2012.
[12] 薛峰, 王丽薇, 潘河, 等. 液压打桩锤冲击结构动态应力分析[J]. 建筑机械, 2017(6): 51-53, 57.
XUE F, WANG L W, PAN H, et al.Dynamic stress analysis of impacting structure for a hydraulic pile hammer[J]. Construction machinery, 2017(6): 51-53, 57.
[13] 刘捷, 龙正如, 苏长南. 海上导管架沉桩施工送桩器能量消散分析[J]. 广东水利水电, 2020(7): 83-86.
LIU J, LONG Z R, SU C N.Energy dissipation analysis of pile extension in piling of offshore wind turbine jacket foundation[J]. Guangdong water resources and hydropower, 2020(7): 83-86.
[14] 刘捷. 送桩器辅助沉桩能量传递效率研究[J]. 珠江水运, 2021(12): 66-68.
LIU J.Study on energy transfer efficiency of pile driver assisted pile sinking[J]. Pearl river water transport, 2021(12): 66-68.
[15] 王亚辉. 液压锤打桩能量传递分析与贯入效率优化研究[D]. 长沙: 中南大学, 2013.
WANG Y H.Study on energy transfer analysis and penetration efficiency optimization of piling in hydraulic hammer[D]. Changsha: Central South University, 2013.
[16] 李森, 胡晓明, 张谦. 海上风电送桩器沉桩的高应变动力测试研究[J]. 广东水利水电, 2022(9): 10-15.
LI S, HU X M, ZHANG Q.Research on high strain dynamic testing during pile driving with pile follower of offshore wind turbine[J]. Guangdong water resources and hydropower, 2022(9): 10-15.
[17] 李文森. 超长送桩在锤击预应力管桩施工中的应用[J]. 工程建设, 2017, 49(4): 86-88.
LI W S.Application of overlength pile follower in construction of the prestressed hammer pipe pile[J]. Engineering construction, 2017, 49(4): 86-88.
[18] 王涛. 液压桩锤冲击机构的瞬态动力特性及冲击性能研究[D]. 长沙: 中南大学, 2010.
WANG T.Study on transient dynamic characteristics and impact performance of hydraulic pile hammer impact mechanism[D]. Changsha: Central South University, 2010.
[19] 林登. 液压打桩锤技术与应用浅析[J]. 建筑机械, 2020(9): 49-52.
LIN D.Analysis of technology and application of hydraulic piling hammer[J]. Construction machinery, 2020(9): 49-52.
[20] 丁全智, 邱成国, 孙福. 液压打桩锤在海洋工程中的应用[J]. 建筑机械化, 2015, 36(11): 31-34.
DING Q Z, QIU C G, SUN F.Application of hydraulic pile hammer in oceanographic technology[J]. Construction mechanization, 2015, 36(11): 31-34.
[21] 李继松. 基于Solidworks Simulation收卷机卷筒主轴的疲劳分析[J]. 制造业自动化, 2014, 36(19): 126-127.
LI J S.Fatigue analysis of pay-off reel mandrel based on solidworks simulation[J]. Manufacturing automation, 2014, 36(19): 126-127.
[22] American Petroleum Institute.Recommended practice for planning, designing and constructing fixed offshore platforms: working stress design[S]. 21th ed. Washington DC: API, 2014.