基于IBCAN的风力发电机轴承故障诊断方法研究

和林芳, 王道涵, 田淼, 安文杰, 孙鲜明

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 97-104.

PDF(1457 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1457 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 97-104. DOI: 10.19912/j.0254-0096.tynxb.2023-1380

基于IBCAN的风力发电机轴承故障诊断方法研究

  • 和林芳1, 王道涵1, 田淼2, 安文杰2, 孙鲜明3
作者信息 +

RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE BEARING BASED ON IBCAN

  • He Linfang1, Wang Daohan1, Tian Miao2, An Wenjie2, Sun Xianming3
Author information +
文章历史 +

摘要

针对风力发电机轴承实际运行工况下故障类别随时间的推移逐步积累的问题,提出一种改进的具有增量学习能力的宽度卷积注意网络(IBCAN)的故障诊断方法,可在不重新训练模型的基础上诊断新增故障类别。首先,将风力发电机轴承振动信号利用连续小波变换(CWT)提取时频特征;其次,针对历史故障类别数据集,利用卷积注意网络(CAN)获得风力发电机轴承振动信号小波变换图的深度特征表示;然后,利用弹性网回归改进宽度学习系统(IBLS)将CAN所获特征和相应标签传输到IBLS中进行分类;最后,针对新增故障类别数据集,通过IBLS的扩展节点进行增量学习,进而实现新增故障类别诊断。通过实际采集的风力发电机轴承数据对所提方法进行试验验证,并与其他方法进行对比,结果表明,该方法能有效地更新风力发电机轴承故障诊断模型,增量学习新故障类别,对实际工程中风力发电机轴承故障诊断研究具有重要意义。

Abstract

Aiming at the problem that the fault categories of wind turbine bearings accumulate gradually over time under actual operating conditions, this paper proposes an improved fault diagnosis method with incremental learning capability of Width Convolutional Attention Network (IBCAN), which can diagnose new fault categories without retraining the model. Firstly, the time-frequency characteristics of wind turbine bearing vibration signals are extracted using continuous wavelet transform (CWT). Secondly, the convolutional attention network (CAN) will be used to obtain the deep feature representation of the wavelet transform map of the bearing vibration signal for historical fault category datasets. Then, using elastic network regression to improve the width learning system (IBLS) and transfer the features and corresponding labels obtained from CAN to IBLS for classification. This paper conducts experimental verification on the proposed method through the collected bearing data of wind turbines under actual operating conditions and compares it with other methods. The results show that this method can effectively update the fault diagnosis model of wind turbine bearings, incrementally learn new fault categories, and is of great significance for the research of wind turbine bearing fault diagnosis in practical engineering.

关键词

风力发电机 / 轴承 / 故障诊断 / 增量学习 / 卷积神经网络

Key words

wind turbines / bearings / fault diagnosis / incremental learning / convolutional neural network

引用本文

导出引用
和林芳, 王道涵, 田淼, 安文杰, 孙鲜明. 基于IBCAN的风力发电机轴承故障诊断方法研究[J]. 太阳能学报. 2025, 46(1): 97-104 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1380
He Linfang, Wang Daohan, Tian Miao, An Wenjie, Sun Xianming. RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE BEARING BASED ON IBCAN[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 97-104 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1380
中图分类号: TK83   

参考文献

[1] 齐咏生, 单成成, 高胜利, 等. 基于AEWT-KELM的风电机组轴承故障诊断策略[J]. 太阳能学报, 2022, 43(8): 281-291.
QI Y S, SHAN C C, GAO S L, et al.Fault diagnosis strategy of wind turbines bearing based on AEWT-KELM[J]. Acta energiae solaris sinica, 2022, 43(8): 281-291.
[2] 雷春丽, 薛林林, 焦孟萱, 等. 结合改进ResNet与迁移学习的风力机滚动轴承故障诊断方法[J]. 太阳能学报, 2023, 44(6): 436-444.
LEI C L, XUE L L, JIAO M X, et al.Fault diagnosis method of wind turbines rolling bearing based on improved ResNet and transfer learning[J]. Acta energiae solaris sinica, 2023, 44(6): 436-444.
[3] LIU X J, SUN W, LI H K, et al.The method of rolling bearing fault diagnosis based on multi-domain supervised learning of convolution neural network[J]. Energies, 2022, 15(13): 4614.
[4] MA M H, HOU Y J, LI Y G.A multi-scale feature fusion network-based fault diagnosis method for wind turbine bearings[J]. Wind engineering, 2023, 47(1): 3-15.
[5] YANG S J, YANG P K, YU H, et al.A 2DCNN-RF model for offshore wind turbine high-speed bearing-fault diagnosis under noisy environment[J]. Energies, 2022, 15(9): 3340.
[6] LIU X Y, ZHANG Z M, MENG F W, et al.Fault diagnosis of wind turbine bearings based on CNN and SSA-ELM[J]. Journal of vibration engineering & technologies, 2023, 11(8): 3929-3945.
[7] GUO W, CHEN S S, YUAN X F.H-BLS: a hierarchical broad learning system with deep and sparse feature learning[J]. Applied intelligence, 2023, 53(1): 153-168.
[8] FU Y, CAO H R, CHEN X F, et al.Improved broad learning system for machinery intelligent fault diagnosis with increasing fault samples, fault modes, and running conditions[J]. ISA transactions, 2023, 136: 400-416.
[9] ZHANG S Q, WANG R J, WANG L B, et al.Fault diagnosis for power converters based on incremental learning[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 3512813.
[10] MOU M, ZHAO X Q, LIU K, et al.A latent representation dual manifold regularization broad learning system with incremental learning capability for fault diagnosis[J]. Measurement science and technology, 2023, 34(7): 075005.
[11] 刘洋, 程强, 史曜炜, 等. 基于注意力模块及1D-CNN的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(3): 462-468.
LIU Y, CHENG Q, SHI Y W, et al.Fault diagnosis of rolling bearings based on attention module and 1D-CNN[J]. Acta energiae solaris sinica, 2022, 43(3): 462-468.
[12] MA R R, WANG J, ZHAO W, et al.Identification of maize seed varieties using MobileNetV2 with improved attention mechanism CBAM[J]. Agriculture, 2022, 13(1): 11.
[13] ANJAIAH K, DASH P K, SAHANI M.Detection of faults and DG islanding in PV-Wind DC ring bus microgrid by using optimized VMD based improved broad learning system[J]. ISA transactions, 2022, 131: 533-551.
[14] DU R Y, WANG S Y, LIU F L.Broad learning system-based detector for OFDM with index modulation[J]. IEEE communications letters, 2023, 27(1): 224-228.
[15] LIU Y, CHEN B J, WANG D, et al.A lifelong learning method based on generative feature replay for bearing diagnosis with incremental fault types[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 3514311.
[16] ZHENG J H, XIONG H, ZHANG Y C, et al.Bearing fault diagnosis via incremental learning based on the repeated replay using memory indexing (R-REMIND) method[J]. Machines, 2022, 10(5): 338.

基金

国家自然科学基金(51675350; 51575361)

PDF(1457 KB)

Accesses

Citation

Detail

段落导航
相关文章

/