添加剂提高宽带隙钙钛矿太阳电池的性能

李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 30-35.

PDF(2406 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2406 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 30-35. DOI: 10.19912/j.0254-0096.tynxb.2023-1386

添加剂提高宽带隙钙钛矿太阳电池的性能

  • 李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗
作者信息 +

ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS

  • Li Zhuoxin, Feng Xuzheng, Chen Xianggang, Liu Xuepeng, Dai Songyuan, Cai Molang
Author information +
文章历史 +

摘要

该文研究聚对苯乙烯磺酸钠(PSS)对宽带隙钙钛矿薄膜及电池的影响。研究发现PSS添加剂可改善宽带隙钙钛矿薄膜的形貌,提升结晶度并减少缺陷态密度,这有利于抑制混合卤素宽带隙钙钛矿薄膜的相分离问题。J-V测试结果表明钝化后的宽带隙钙钛矿太阳电池性能得到明显提升。在掺有PSS的宽带隙钙钛矿太阳电池中,开路电压最高可达1.23 V,效率最高可达20.54%,并且相分离被抑制后的封装钙钛矿太阳电池稳定性显著改善,在一个太阳连续光照500 h后,电池效率仍可保持在初始效率的81.9%(氮气环境,温度40 ℃)。

Abstract

The effects of polysodium p-styrene sulfonate(PSS) on wide-bandgap perovskite films and devices are studied in this paper. The research of this paper shows that use of a polypodium PSS passivator can effectively improve the morphology, increase the crystallinity, and reduce the defect density of perovskite films, which are beneficial to inhibit the phase segregation of mixed-halide wide-bandgap perovskite films. Finally, the J-V test results show that the performance of the optimized wide-bandgap perovskite solar cell is significantly improved. In the wide bandgap perovskite solar cell with PSS, the open circuit voltage is up to 1.23 V, and the efficiency is up to 20.54%. Moreover, the stability of the encapsulated device is significantly improved after phase segregation being inhibited, and the efficiency remains 81.9% of the initial efficiency under continuous illumination for 500 h (N2 environment, 40 ℃).

关键词

钙钛矿太阳电池 / 宽带隙 / 结晶度 / 缺陷钝化 / 相分离 / 性能

Key words

perovskite solar cells / wide-band gap / crystallinity / defect passivation / phase segregation / performance

引用本文

导出引用
李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗. 添加剂提高宽带隙钙钛矿太阳电池的性能[J]. 太阳能学报. 2024, 45(4): 30-35 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1386
Li Zhuoxin, Feng Xuzheng, Chen Xianggang, Liu Xuepeng, Dai Songyuan, Cai Molang. ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 30-35 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1386
中图分类号: TM914.4   

参考文献

[1] KIM M, JEONG J, LU H Z, et al.Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306.
[2] FEI C B, LI N X, WANG M R, et al.Lead-chelating hole-transport layers for efficient and stable perovskite minimodules[J]. Science, 2023, 380(6647): 823-829.
[3] LUO X H, LIN X S, GAO F, et al.Recent progress in perovskite solar cells: from device to commercialization[J]. Science China chemistry, 2022, 65(12): 2369-2416.
[4] GUILLEMOLES J F, KIRCHARTZ T, CAHEN D, et al.Guide for the perplexed to the Shockley-Queisser model for solar cells[J]. Nature photonics, 2019, 13: 501-505.
[5] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[6] LI H, ZHANG W.Perovskite tandem solar cells: from fundamentals to commercial deployment[J]. Chemical reviews, 2020, 120(18): 9835-9950.
[7] WANG X L, YING Z Q, ZHENG J M, et al.Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion[J]. Nature communications, 2023, 14(1): 2166.
[8] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al.Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical science, 2015, 6(1): 613-617.
[9] KIM G Y, SENOCRATE A, YANG T Y, et al.Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition[J]. Nature materials, 2018, 17(5): 445-449.
[10] MUSCARELLA L A, EHRLER B.The influence of strain on phase stability in mixed-halide perovskites[J]. Joule, 2022, 6(9): 2016-2031.
[11] WEN J, ZHAO Y C, LIU Z, et al.Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells[J]. Advanced materials, 2022, 34(26): e2110356.
[12] BARKER A J, SADHANALA A, DESCHLER F, et al.Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films[J]. ACS energy letters, 2017, 2(6): 1416-1424.
[13] WEI J, WANG Q W, HUO J D, et al.Mechanisms and suppression of photoinduced degradation in perovskite solar cells[J]. Advanced energy materials, 2021, 11(3): 2002326.
[14] ZAI H C, MA Y, CHEN Q, et al.Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression[J]. Journal of energy chemistry, 2021, 63(12): 528-549.
[15] LI Z X, LI X, CHEN X G, et al.In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics[J]. Joule, 2023, 7(6): 1363-1381.
[16] TAO L, DU X Q, HU J F, et al.Stabilizing wide-bandgap halide perovskites through hydrogen bonding[J]. Science China chemistry, 2022, 65(8): 1650-1660.
[17] WANG L N, SONG Q, PEI F, et al.Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells[J].Advanced materials, 2022, 34(26): 2201315.
[18] LI Z X, LI X, WANG M C, et al.Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells[J]. ACS applied energy materials, 2022, 5(1): 108-115.
[19] TAN H R, CHE F L, WEI M Y, et al.Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites[J]. Nature communications, 2018, 9: 3100.
[20] WANG X B, SUN W H, TU Y G, et al.Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%[J]. Chemical engineering journal, 2022, 446: 137416.
[21] CHEN M Y, LIN J T, HSU C S, et al.Strongly coupled tin-halide perovskites to modulate light emission: tunable 550-640 nm light emission (FWHM 36-80 nm) with a quantum yield of up to 6.4[J]. Advanced materials, 2018, 30(20): e1706592.
[22] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[23] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[24] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.

基金

国家自然科学基金(52202169; 22279033); 江苏省碳达峰碳中和科技创新专项资金(BE2022026)

PDF(2406 KB)

Accesses

Citation

Detail

段落导航
相关文章

/