利用可再生能源发电进行电解水制氢是实现可再生能源的100%消纳和氢气全绿制取的重要途经。作为衔接可再生能源发电母线和质子交换膜电解槽的中间环节,单个制氢电源功率等级低,不能满足大规模可再生能源消纳和大功率制氢,因此需采用制氢电源的模块化并联方法,但模块化并联时存在模块间不均流问题。针对多个制氢电源并联时的不均流问题,提出基于三相交错并联LLC结构的制氢电源并联方案。首先,推导了多个制氢电源并联等效电路,从阻抗角度入手,得到模块间谐振参数差异是不均流的主要原因。然后,利用虚拟阻抗调整等效阻抗,从而实现模块间均流。最后,搭建仿真模型和一台两个6 kW模块化实验样机,验证了所提并联方案的合理性和可行性。
Abstract
Hydrogen production from electrolytic water based on renewable energy generation is an important way to achieve 100% consumption of renewable energy and preparation of green hydrogen. As the intermediate link between renewable energy generation bus and proton exchange membrane electrolyzer, a single hydrogen production power supply has a low power level and cannot achieve large-scale consumption of renewable energy and high power hydrogen production. Therefore, the modular parallel method of hydrogen production power supply needs to be adopted, but the problem of current imbalance between modules exists in the modular parallel. In order to solve the problem of current imbalance, a parallel scheme of hydrogen production power supply based on three-phase staggered parallel LLC structure is proposed. Firstly, multiple parallel equivalent circuits of hydrogen production power supply are derived. From the point of impedance, it is found that the difference of resonant parameters between modules is the main reason for the current imbalance. Then, the virtual impedance is used to adjust the equivalent impedance, so that the current is balanced between modules. Finally, a simulation model and two 6 kW modular experimental prototypes are built to verify the rationality and feasibility of the proposed parallel scheme.
关键词
可再生能源发电 /
电解水制氢 /
制氢电源并联方案 /
谐振参数差异 /
虚拟阻抗
Key words
renewable energy generation /
hydrogen production from electrolytic water /
parallel scheme of hydrogen production power supply /
difference of resonant parameters /
virtual impedance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[2] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[3] 邱一苇, 吉旭, 朱文聪, 等. 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望[J]. 中国电机工程学报, 2023, 43(18): 6934-6954.
QIU Y W, JI X, ZHU W C, et al.Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies[J]. Proceedings of the CSEE, 2023, 43(18): 6934-6954.
[4] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199.
GUO X Q, WEI Y P, WAN Y M, et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of electric power systems, 2021, 45(20): 185-199.
[5] 孔令国, 宫健, 杨士慧, 等. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451.
KONG L G, GONG J, YANG S H, et al.Development status and trend of DC/DC isolated hydrogen production power supply[J]. Power generation technology, 2023, 44(4): 443-451.
[6] GUILBERT D, SORBERA D, VITALE G.A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: design and experimental validation[J]. International journal of hydrogen energy, 2020, 45(1): 64-79.
[7] GARRIGÓS A, LIZÁN J L, BLANES J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter[J]. International journal of hydrogen energy, 2014, 39(36): 20907-20919.
[8] YODWONG B, GUILBERT D, KAEWMANEE W, et al.Modified sliding mode-based control of a three-level interleaved DC-DC buck converter for proton exchange membrane water electrolysis[C]//2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C). Bangkok, Thailand, 2021: 221-226.
[9] GAUTAM D S, BHAT A K S. A comparison of soft-switched DC-to-DC converters for electrolyzer application[J]. IEEE transactions on power electronics, 2013, 28(1): 54-63.
[10] BLINOV A, ANDRIJANOVITS A.New DC/DC converter for electrolyser interfacing with stand-alone renewable energy system[J]. Electrical, control and communication engineering, 2012, 1(1): 24-29.
[11] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on dc power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[12] KOPONEN J, RUUSKANEN V, KOSONEN A, et al.Effect of converter topology on the specific energy consumption of alkaline water electrolyzers[J]. IEEE transactions on power electronics, 2019, 34(7): 6171-6182.
[13] 杨文强, 邢小文, 王思晗. 大功率制氢变换器拓扑结构及其控制策略研究[J]. 电力电子技术, 2020, 54(12): 5-8.
YANG W Q, XING X W, WANG S H.Research on topological structure and control strategy of high power converter for hydrogen production[J]. Power electronics, 2020, 54(12): 5-8.
[14] 孔雪娟, 彭力, 康勇, 等. 模块化移相谐振式DC/DC变流器和并联运行[J]. 电力电子技术, 2002, 36(5): 40-43, 47.
KONG X J, PENG L, KANG Y, et al.Modularized phase-shifted resonant DC/DC converters and their parellei operation[J]. Power electronics, 2002, 36(5): 40-43, 47.
[15] MURATA K, KUROKAWA F.An interleaved PFM LLC resonant converter with phase-shift compensation[J]. IEEE transactions on power electronics, 2016, 31(3): 2264-2272.
[16] 任小永, 王亚坤, 陈宇, 等. 基于虚拟阻抗的LLC谐振变换器并联均流控制[J]. 电工技术学报, 2019, 34(21): 4540-4550.
REN X Y, WANG Y K, CHEN Y, et al.Parallel current sharing control of LLC resonant converter based on virtual impedance[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4540-4550.
[17] 张豪, 韩民晓, 张夏辉, 等. 多路LLC谐振变换器交错并联均流控制[J]. 电力自动化设备, 2023, 43(4): 62-68.
ZHANG H, HAN M X, ZHANG X H, et al.Interleaved parallel current sharing control for multi-channel LLC resonant converter[J]. Electric power automation equipment, 2023, 43(4): 62-68.
[18] 钱尼信. 光伏制氢系统大功率降压型DC/DC变换器研究[D]. 合肥: 合肥工业大学, 2021.
QIAN N X.Research on high power buck DC/DC converter in photovoltaic hydrogen production system[D]. Hefei: Hefei University of Technology, 2021.
[19] ARSHADI S A, ORDONEZ M, EBERLE W, et al.Unbalanced three-phase $LLC$ resonant converters: analysis and trigonometric current balancing[J]. IEEE transactions on power electronics, 2019, 34(3): 2025-2038.
[20] 保定三伊电力电子有限公司, 自动化控制电解制氢直流电源装置[EB/OL]. [2021-01-01].http://687974.51solecom/ company productdetail_3316764.Html.
Baoding San Yi Power Electronics Co. Automatic controlof direct current power supply for hydrogen production by electrolysis[EB/OL] [2021-01-01].http://687974.51sole.com/companyproductdetail_3316764.html.
[21] 温州高企能源科技有限公司. CHD水电解制氢设备[EB/OL] .[2021-01-01] .http://www.wzcoch.com/ Catalogue/CHGsdjz qsb_ID2.html.
Wenzhou Gao qi Energy Technology Co. Equipment for hydrogen production by electrolysis of water from CH[EB/OL].[2021-01-01] . http://www.wzcoch.com/Catalogue/CHGsdjz qsb_ID2.html.
[22] GARRIGÓS A, BLANES J M, CARRASCO J A, et al. 5 kW DC/DC converter for hydrogen generation from photovoltaic sources[J]. International journal of hydrogen energy, 2010, 35(12): 6123-6130.
基金
国家重点研发计划(2021YFE0103800)