Key Laboratory of Renewable Energy Electric-Technology Technology of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
In the review, we analyze the principle of using ILs to enhance the performance of PSCs, and then review the progress of the application of ILs as additives for PSCs from the perspective of regulating perovskite film morphology, passivating defects, stabilizing perovskite phase, improving environmental stability, and enhancing electrical conductivity, and look forward to its future prospects.
Zeng Yuxi, Chen Jianlin, Tian Qiaoqiao, Wu Zihan, Ju Jiayao, Zhao Wei.
IONIC LIQUID ADDITIVE ENGINEERING FOR PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 72-84 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1398
中图分类号:
TM914.4
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HUTTER E M, HOFMAN J J, PETRUS M L, et al.Charge transfer from methylammonium lead iodide perovskite to organic transport materials: efficiencies, transfer rates, and interfacial recombination[J]. Advanced energy materials, 2017, 7(13): 1602349. [2] LIM K G, HAN T H, LEE T W.Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes[J]. Energy & environmental science, 2021, 14(4): 2009-2035. [3] KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [4] CHEN Y H, TAN S Q, LI N X, et al.Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics[J]. Joule, 2020, 4(9): 1961-1976. [5] KIM M, JEONG J, LU H Z, et al.Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306. [6] National Renewable Energy Labortary. Best research-cell efficiencies chart[EB/OL]. (2023-07-22). https://www.nrel.gov/pv/cell-efficiency.html. [7] WANG Q, CHEN B, LIU Y, et al.Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films[J]. Energy & environmental science, 2017, 10(2): 516-522. [8] HO-BAILLIE A, ZHANG M, LAU C F J, et al. Untapped potentials of inorganic metal halide perovskite solar cells[J]. Joule, 2019, 3(4): 938-955. [9] STEELE J A, JIN H D, DOVGALIUK I, et al.Thermal unequilibrium of strained black CsPbI3 thin films[J]. Science, 2019, 365(6454): 679-684. [10] LU H Z, LIU Y H, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512): eabb8985. [11] XIANG W C, LIU S Z, TRESS W.A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells[J]. Energy & environmental science, 2021, 14(4): 2090-2113. [12] WANIGASEKARA E, ZHANG X T, NANAYAKKARA Y, et al.Linear tricationic room-temperature ionic liquids: synthesis, physiochemical properties, and electrowetting properties[J]. ACS applied materials & interfaces, 2009, 1(10): 2126-2133. [13] NASIRPOUR N, MOHAMMADPOURFARD M, ZEINALI HERIS S.Ionic liquids: promising compounds for sustainable chemical processes and applications[J]. Chemical engineering research and design, 2020, 160: 264-300. [14] KAUR G, KUMAR H, SINGLA M.Diverse applications of ionic liquids: a comprehensive review[J]. Journal of molecular liquids, 2022, 351: 118556. [15] MASRI A N, ABDUL MUTALIB M I, YAHYA W Z N, et al. Rapid esterification of fatty acid using dicationic acidic ionic liquid catalyst via ultrasonic-assisted method[J]. Ultrasonics sonochemistry, 2020, 60: 104732. [16] KRISHNAN A, GOPINATH K P, VO D V N, et al. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review[J]. Environmental chemistry letters, 2020, 18(6): 2031-2054. [17] SHIDDIKY M J A, TORRIERO A A J. Application of ionic liquids in electrochemical sensing systems[J]. Biosensors & bioelectronics, 2011, 26(5): 1775-1787. [18] ZHANG J, WANG W X, ZHANG Y, et al.Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction[J]. Nature communications, 2022, 13(1): 5214. [19] JÓNSSON E. Ionic liquids as electrolytes for energy storage applications: a modelling perspective[J]. Energy storage materials, 2020, 25: 827-835. [20] VÁZQUEZ-FERNÁNDEZ I, RAGHIBI M, BOUZINA A, et al. Protic ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application[J]. Journal of energy chemistry, 2021, 53(2): 197-207. [21] SONG J.Research progress of ionic liquids as lubricants[J]. ACS omega, 2021, 6(44): 29345-29349. [22] STOUMPOS C C, KANATZIDIS M G.The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of chemical research, 2015, 48(10): 2791-2802. [23] ZHANG T Y, XU Q L, XU F, et al.Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells[J]. Science bulletin, 2019, 64(21): 1608-1616. [24] ÖZ S, BURSCHKA J, JUNG E, et al.Protic ionic liquid assisted solution processing of lead halide perovskites with water, alcohols and acetonitrile[J]. Nano energy, 2018, 51: 632-638. [25] YANG D, YANG R X, REN X D, et al.Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Advanced materials, 2016, 28(26): 5206-5213. [26] CALIÒ L, SALADO M, KAZIM S, et al.A generic route of hydrophobic doping in hole transporting material to increase longevity of perovskite solar cells[J]. Joule, 2018, 2(9): 1800-1815. [27] ZHENG W, MOHAMMED A, HINES L G Jr, et al. Effect of cation symmetry on the morphology and physicochemical properties of imidazolium ionic liquids[J]. The journal of physical chemistry B, 2011, 115(20): 6572-6584. [28] FAN F, ZHANG Y, HAO M, et al.Harnessing chemical functions of ionic liquids for perovskite solar cells[J]. Journal of energy chemistry, 2022, 31(5): 797-810. [29] SILVA D R, DE AZEVEDO S L, FREITAS M, et al. Nature and strength of lewis acid/base interaction in boron and nitrogen trihalides[J]. Chemistry, an Asian journal, 2020, 15(23): 4043-4054. [30] WANG S R, WANG A L, DENG X Y, et al.Lewis acid/base approach for efficacious defect passivation in perovskite solar cells[J]. Journal of materials chemistry A, 2020, 8(25): 12201-12225. [31] MENG X Y, LIN J B, LIU X, et al.Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding[J]. Advanced materials, 2019, 31(42): e1903721. [32] SALADO M, FERNÁNDEZ M A, HOLGADO J P, et al. Towards extending solar cell lifetimes: addition of a fluorous cation to triple cation-based perovskite films[J]. ChemSusChem, 2017, 10(19): 3846-3853. [33] XIA R, GAO X X, ZHANG Y, et al.An efficient approach to fabricate air-stable perovskite solar cells via addition of a self-polymerizing ionic liquid[J]. Advanced materials, 2020, 32(40): e2003801. [34] SALADO M, JODLOWSKI A D, ROLDAN-CARMONA C, et al.Surface passivation of perovskite layers using heterocyclic halides: improved photovoltaic properties and intrinsic stability[J]. Nano energy, 2018, 50: 220-228. [35] GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J]. Nature communications, 2017, 8: 15684. [36] PENG X F, YANG X H, LIU D T, et al.Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency[J]. ACS energy letters, 2021, 6(12): 4187-4194. [37] WANG A L, DENG X Y, WANG J W, et al.Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells[J]. Nano energy, 2021, 81: 105631. [38] HONG L, MILIĆ J V, AHLAWAT P, et al.Guanine-stabilized formamidinium lead iodide perovskites[J]. Angewandte chemie (international Ed in English), 2020, 59(12): 4691-4697. [39] WEI Q B, CHANG D P, YE Z W, et al.Giant improvement of performances of perovskite solar cells via component engineering[J]. Journal of colloid and interface science, 2021, 588: 393-400. [40] CHAO L F, NIU T T, GAO W Y, et al.Solvent engineering of the precursor solution toward large-area production of perovskite solar cells[J]. Advanced materials, 2021, 33(14): e2005410. [41] PARK N G.Green solvent for perovskite solar cell production[J]. Nature sustainability, 2021, 4: 192-193. [42] ZHANG J J, ZHANG L Y, LI X H, et al.Binary solvent engineering for high-performance two-dimensional perovskite solar cells[J]. ACS sustainable chemistry & engineering, 2019, 7(3): 3487-3495. [43] LI N X, TAO S X, CHEN Y H, et al.Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nature energy, 2019, 4: 408-415. [44] WANG Y, ZHANG T Y, KAN M, et al.Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(39): 12345-12348. [45] ZHENG X P, HOU Y, BAO C X, et al.Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature energy, 2020, 5: 131-140. [46] MENG X C, HU X T, ZHANG Y Y, et al.A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage[J]. Advanced functional materials, 2021, 31(52): 2106460. [47] GAO B W, MENG J.Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing[J]. Solar energy, 2021, 230: 598-604. [48] CHAO L F, NIU T T, GU H, et al.Origin of high efficiency and long-term stability in ionic liquid perovskite photovoltaic[J]. Research, 2020, 2020: 2616345. [49] CHEN Z L, TUREDI B, ALSALLOUM A Y, et al.Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency[J]. ACS energy letters, 2019, 4(6): 1258-1259. [50] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635. LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635. [51] WAN Y Y, DONG S J, WANG Y L, et al.Ionic liquid-assisted perovskite crystal film growth for high performance planar heterojunction perovskite solar cells[J]. RSC advances, 2016, 6(100): 97848-97852. [52] LI X D, LI C Z, ZHAO X, et al.Enhancing the photovoltaic performance and moisture stability of perovskite solar cells via polyfluoroalkylated imidazolium additives[J]. ACS applied materials & interfaces, 2021, 13(3): 4553-4559. [53] LI D Y, HUANG Y L, WANG G L, et al.Boosting the performance of MA-free inverted perovskite solar cells via multifunctional ion liquid[J]. Journal of materials chemistry A, 2021, 9(21): 12746-12754. [54] WANG R, XUE J J, MENG L, et al.Caffeine improves the performance and thermal stability of perovskite solar cells[J]. Joule, 2019, 3(6): 1464-1477. [55] BI D Q, YI C Y, LUO J S, et al.Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature energy, 2016, 1(10): 16142. [56] SEO J Y, MATSUI T, LUO J S, et al.Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency[J]. Advanced energy materials, 2016, 6(20): 1600767. [57] HUANG D W, XIE P F, PAN Z X, et al.One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells[J]. Journal of materials chemistry A, 2019, 7(39): 22420-22428. [58] LEI Y T, XU Y K, WANG M, et al.Origin, influence, and countermeasures of defects in perovskite solar cells[J]. Small, 2021, 17(26): e2005495. [59] LUO D Y, SU R, ZHANG W, et al.Minimizing non-radiative recombination losses in perovskite solar cells[J]. Nature reviews materials, 2020, 5: 44-60. [60] JIN H D, DEBROYE E, KESHAVARZ M, et al.It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites[J]. Materials horizons, 2020, 7(2): 397-410. [61] WANG S J, LI Z, ZHANG Y Y, et al.Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells[J]. Advanced functional materials, 2019, 29(15): 1900417. [62] DU Y C, TIAN Q W, CHANG X M, et al.Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells[J]. Advanced materials, 2022, 34(10): e2106750. [63] ZHANG W Y, LIU X J, HE B L, et al.Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells[J]. ACS applied materials & interfaces, 2020, 12(4): 4540-4548. [64] PAN W C, LIN J M, WU J H, et al.Efficient surface treatment based on an ionic imidazolium hexafluorophosphate for improving the efficiency and stability of perovskite solar cells[J]. Applied surface science, 2022, 604: 154486. [65] GAO X X, DING B, KANDA H, et al.Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid[J]. Cell reports physical science, 2021, 2: 100475. [66] KATO Y, TOLEDO L M, REBEK J.Energetics of a low barrier hydrogen bond in nonpolar solvents[J]. Journal of the American Chemical Society, 1996, 118(36): 8575-8579. [67] WU T H, WANG Y B, DAI Z S, et al.Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups[J]. Advanced materials, 2019, 31(24): 1900605. [68] WANG S, ZHU Y, WANG C Y, et al.Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells[J]. Journal of materials chemistry A, 2019, 7(19): 11867-11876. [69] HUANG Y, ZHONG H, LI W B, et al.Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells[J]. Solar energy, 2022, 231: 1048-1060. [70] HUI W, CHAO L F, LU H, et al.Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity[J]. Science, 2021, 371(6536): 1359-1364. [71] LI X D, ZHANG Y Q, LIU G H, et al.Ionic liquid as an additive for two-step sequential deposition for air-processed efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cells[J]. ACS applied energy materials, 2021, 4(12): 13444-13449. [72] YANG S, WANG Y, LIU P R, et al.Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature energy, 2016, 1(2): 15016. [73] WANG J, YE X X, WANG Y Y, et al.Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell[J]. Electrochimica acta, 2019, 303: 133-139. [74] ZHENG D D, YI F X, ZHANG Q Y, et al.Multidimensional function upgradation of all-inorganic CsPbIBr2 perovskite film by doping an ionic additive for carbon-electrode-based solar cells[J]. Energy technology, 2022, 10(7): 2200290. [75] ZHU X J, WANG C Y, ZHANG C, et al.Imidazolium-based ionic liquid for stable and highly efficient black-phase formamidinium-based perovskite solar cell[J]. Chemical engineering journal, 2022, 434: 134759. [76] BRENES R, EAMES C, BULOVIĆ V, et al.The impact of atmosphere on the local luminescence properties of metal halide perovskite grains[J]. Advanced materials, 2018, 30(15): e1706208. [77] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al.Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nature communications, 2017, 8: 15218. [78] KLEIN-KEDEM N, CAHEN D, HODES G.Effects of light and electron beam irradiation on halide perovskites and their solar cells[J]. Accounts of chemical research, 2016, 49(2): 347-354. [79] WEI D, MA F S, WANG R, et al.Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells[J]. Advanced materials, 2018, 30(31): e1707583. [80] WANG X J, RAN X Q, LIU X T, et al.Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic[J]. Angewandte chemie (international Ed in English), 2020, 59(32): 13354-13361. [81] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82. ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82. [82] FU F, PISONI S, JEANGROS Q, et al.I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions[J]. Energy & environmental science, 2019, 12(10): 3074-3088. [83] 石骥硕, 吕龙锋, 侯延冰. 碘化铅残留对钙钛矿太阳电池性能影响[J]. 太阳能学报, 2018, 39(6): 1619-1624. SHI J S, LYU L F, HOU Y B.Effect of remnant PbI2 on performance of perovskite solar cell[J]. Acta energiae solaris sinica, 2018, 39(6): 1619-1624. [84] WANG H H, WANG Z W, YANG Z, et al.Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells[J]. Advanced materials, 2020, 32(21): e2000865. [85] HOLOVSKÝ J, PETER AMALATHAS A, LANDOVÁ L, et al.Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells[J]. ACS energy letters, 2019, 4(12): 3011-3017. [86] ZHAO Y, MA F, QU Z H, et al.Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells[J]. Science, 2022, 377(6605): 531-534. [87] ZHANG H K, YU W, GUO J X, et al.Excess PbI2 management via multimode supramolecular complex engineering enables high-performance perovskite solar cells[J]. Advanced energy materials, 2022, 12(35): 2201663. [88] LIN Y H, SAKAI N, DA P M, et al.A piperidinium salt stabilizes efficient metal-halide perovskite solar cells[J]. Science, 2020, 369(6499): 96-102. [89] YU J C, BADGUJAR S, JUNG E D, et al.Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive[J]. Advanced materials, 2019, 31(6): e1805554. [90] WU Y Z, XIE F X, CHEN H, et al.Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering[J]. Advanced materials, 2017, 29(28): 1701073. [91] FANG M, TAO L, WU W, et al.Residual solvent extraction via chemical displacement for efficient and stable perovskite solar cells[J]. Journal of energy chemistry, 2021, 61: 8-14. [92] 潘武淳, 王磊, 张深, 等. 钙钛矿太阳电池载流子传输-复合模型研究[J]. 太阳能学报, 2019, 40(1): 68-72. PAN W C, WANG L, ZHANG S, et al.Electron transmission-composite model analysis of perovskite solar cell[J]. Acta energiae solaris sinica, 2019, 40(1): 68-72. [93] PENG C, XIA X F, WANG X F, et al.Role of π-conjugated-length-regulated perovskite intergrain interconnecting in the photovoltaic performance of perovskite solar cells[J]. Applied surface science, 2022, 585: 152670. [94] XIA X F, PENG J Y, WAN Q X, et al.Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability[J]. ACS applied materials & interfaces, 2021, 13(15): 17677-17689. [95] YANG L Q, MA X H, SHANG X N, et al.Zwitterionic ionic liquid confer defect tolerance, high conductivity, and hydrophobicity toward efficient perovskite solar cells exceeding 22% efficiency[J]. Solar RRL, 2021, 5(9): 2100352.